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1. Introduction 
Two-dimensional (2D) materials have emerged as one of the key research directions with many 

breakthroughs in recent years. Since the discovery of graphene [1], this field has opened a new era, 

arousing strong interest due to its unique electronic, optical, mechanical and chemical properties that 
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serves as the cornerstone for predicting fundamental electronic 

properties such as band structure, defect states, and electronic transport 

in 2D materials like graphene and transition metal dichalcogenides 

(TMDs). Concurrently, MD simulations with accurately parameterized 

force fields provide critical insights into their mechanical resilience, 

thermal transport, and defect-driven fracture mechanisms. The 

integration of these two methods enables a multiscale approach to 

material design, from predicting quantum phenomena at the nanoscale to 
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2D materials for next-generation electronics, energy, and sensor 

technologies. 
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only appear at the atomic scale. The outstanding features of 2D materials lie in their planar structure and 

large specific surface area, which make them fundamentally different from traditional bulk materials [2]. 

Graphene, known for its remarkable stiffness and resistance to mechanical stress, has attracted 

researchers who are currently studying the prospect of replacing conventional silicon technology with 

these special materials [3]. The advent of graphene has spurred a wave of exploration into many other 

families of two-dimensional (2D) materials, including: graphyne, graphdiyne, graphenelene, dodecagon, 

and other 2D carbon variants; transition metal dichalcogenides (TMDs, e.g., molybdenum disulfide MoS₂, 

tungsten disulfide WS₂); hexagonal boron nitride (hBN); phosphorene (single layer black phosphorus); 

MXenes (2D transition metal carbides, nitrides, or carbonitrides) [4]; as well as oxide-based 2D materials. 

Each material exhibits a distinct set of properties: TMDs possess a direct band gap in their monolayer 

form, opening up prospects in nanoelectronics; hBN is an insulator with exceptional thermal stability [5]; 

while MXenes display high electrical conductivity and great potential for energy storage applications. The 

strength of 2D materials lies in their tunable properties, which can be modulated by varying the number 

of layers, applying mechanical strain, introducing defects, or incorporating elemental doping. For 

example, MoS₂ transitions from an indirect band gap in its bulk form to a direct band gap in the 

monolayer form, significantly enhancing photoluminescence efficiency [6]. To date, extensive 

experimental research has focused on the synthesis and characterization of 2D materials. However, at the 

experimental level, achieving materials with high purity, precise control over the number of layers, and 

large-area sample fabrication remains challenging [7,8]. Meanwhile, at the theoretical level, 

understanding electronic mechanisms, defect dynamics, and interactions with the surrounding 

environment requires simulation tools with high accuracy and multiscale capabilities [9].  

 
Figure 1. Application of simulation to 2D materials research [14]. 

Consequently, the development of data-driven simulation methods has played an important role in 

elucidating atomic level mechanisms, thereby enhancing the understanding of the morphology, structure, 

and properties of 2D materials and supporting the control of complex synthesis processes and structural 

modulation.  In this context, atomic-scale simulation methods such as Density Functional Theory (DFT) 

and Molecular Dynamics (MD) have become the mainstays for the discovery, prediction, and design of 2D 

materials, playing a crucial complementary role to experiments and shortening the transition from 

research to practical applications [10]. DFT is recognized as an efficient and accurate quantum 

mechanical method for investigating the electronic, mechanical, and optical properties of materials, 
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though it is typically limited to systems containing several hundred atoms [11]. In contrast, MD 

simulations can handle much larger systems and longer timescales, but they cannot describe energy and 

electronic properties in as much detail as DFT [12,13]. Therefore, integrating DFT and MD has become an 

inevitable trend in 2D material research, enabling researchers to leverage the strengths of each method 

while mitigating their individual limitations. Recently, numerous studies have successfully combined DFT 

and MD to explore the intrinsic properties of 2D materials. In this work, we synthesize and analyze the 

applications of numerical simulations in 2D material research and highlight the current limitations, as 

illustrated in Figure 1. 

2. Overview of computational methods 
2.1. First principles calculation  
The foundation of the first-principles method lies in quantum mechanics, which describes the behavior of 

electrons and atomic nuclei under all conditions. The Schrödinger equation (Equation 1) is the central 

equation used in these calculations. However, its major limitations stem from its mathematical 

complexity and the high computational cost associated with systems containing more than one electron. 

In multi-electron systems, interactions among electrons give rise to the many-body problem. 

                                                             ĤΨ = EΨ                                                                                            (1) 

where Ĥ is the Hamiltonian, Ψ is the wave function and E is the energy of the system. 

To solve the complex Schrödinger equation, several approximations have been developed, such as the 

Born–Oppenheimer approximation, Kohn–Sham formulation, exchange–correlation (XC) functionals, and 

pseudopotential methods [15,16]. The DFT method has been widely used to calculate the electronic 

structure of molecules and 2D materials [17,18]. Several review papers on DFT are available in the 

literature, discussing in detail its theoretical framework, approximations, and applications across various 

systems [19,20].  

 
Figure 2. Application of DFT in 2D materials research [25]. 

Therefore, we do not discuss the DFT method in detail here but briefly highlight some key 

approximations commonly employed in DFT calculations to achieve more accurate results. For instance, 

conventional DFT calculations based on standard XC functionals often underestimate the band gap values 

of semiconductors compared to experimental results [21]. To address this issue, several modified 

approaches have been developed, including DFT + U (DFT with on-site Coulomb correction), hybrid 
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functionals (e.g., SX Screened Exchange, PBE0 Perdew Burke Ernzerhof hybrid, HSE Heyd Scuseria 

Ernzerhof), the GW approximation (Green’s function + screened Coulomb interaction), and DMFT 

(Dynamical Mean-Field Theory), as illustrated in Figure 2 [22–25]. 

2.2. Molecular dynamics 
Molecular Dynamics (MD) is one of the most important computational simulation tools in materials 

science, chemistry, and biology. The basic principle of MD is to track the time evolution of a many-body 

system (atoms or molecules) based on classical mechanics, primarily Newton’s laws of motion. In this 

approach, the force acting on each atom is determined from the interatomic potential, which is then used 

to update the acceleration, velocity, and position of atoms at small time steps. The MD method was 

originally developed in the 1950s to solve the classical many body problem, extending beyond the 

limitations of traditional theoretical approaches [26]. By analyzing the motion of individual particles 

through interatomic potentials, MD can reproduce the collective dynamics of a system, thereby enabling 

the explanation, prediction, and design of experimentally observed phenomena [27]. The MD simulation 

process typically involves: (i) constructing the simulation system and defining boundary conditions; (ii) 

selecting the interaction force field or potential, for example, the Embedded Atom Method (EAM) 

potential for metals or the Reactive Force Field (ReaxFF) for complex chemical reaction systems; (iii) 

integrating the equations of motion (e.g., Verlet or Velocity Verlet algorithms); and (iv) analyzing the 

results to obtain quantities such as energy, pressure, diffusion coefficients, and radial distribution 

functions (RDFs), as well as insights into kinetic mechanisms and structural transformations [28]. The 

molecular interaction potentials are typically defined using functions such as the Tersoff potential [29–

31] or ReaxFF [32]. In contrast, interlayer molecular interactions are often represented by Lennard–Jones 

potentials in van der Waals multilayers. The MD-based simulation package LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) [33] is one of the most widely used tools for modeling 

nanoscale processes, including nanoindentation experiments. The main advantage of MD is its ability to 

provide detailed, atomistic information in real time something difficult to achieve experimentally. 

However, MD also has limitations, such as relatively short simulation times (typically on the order of 

nanoseconds to microseconds), system sizes constrained by computational resources, and accuracy that 

strongly depends on the choice of potential energy function. With the advancement of supercomputing 

and optimization algorithms, MD has become an increasingly powerful tool for bridging computational 

simulations and experiments, contributing significantly to the discovery, design, and optimization of new 

materials. 

3. Applications 
3.1. DFT: Practical applications 

This section discusses the application of DFT based computational methods to the study of 2D materials. 

By calculating wave functions and particle behavior within the framework of quantum mechanics, DFT 

can provide highly accurate predictions of thermodynamic properties, stability across different crystal 

structures, and various mechanical, electronic, and optical properties. 

3.1.1. Electronic structure prediction 

DFT provides the ability to simulate in detail the energy band structure and band gap of 2D materials 

[25]. For example, for materials such as graphene, MoS₂, and hBN, DFT has accurately determined their 

electronic properties, including whether they exhibit a direct or indirect band gap an important factor in 
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the design of electronic and optoelectronic devices. Recent studies have employed DFT to predict and 

analyze these properties, providing a solid theoretical foundation for the development of new 2D 

materials. Understanding the electronic structure of 2D materials is crucial. The electronic properties 

often change between the bulk and 2D states due to structural splitting and bond modifications. For 

instance, bulk MoS₂ (space group: P6₃/mmc) is an indirect-band-gap insulator with a gap of 0.91 eV, 

where the valence band maximum (VBM) is located at Γ and the conduction band minimum (CBM) lies 

between Γ and K, as shown in Figures 3A–3B. In contrast, monolayer MoS₂ is a direct-band-gap insulator 

with a gap of 1.9 eV according to DFT calculations. Similarly, the band gap of phosphorene decreases from 

1.49 eV in the monolayer to 0.33–0.87 eV as the number of layers increases (Figures 3C–3D). 

 
Figure 3. Thickness dependence of the electronic structure of 2D materials. 

The accuracy of DFT calculations for electronic structure is strongly influenced by the choice of 

pseudopotential function. Selecting an appropriate pseudopotential can yield more accurate results. For 

example, in the semiconductor material RhTeCl, the choice of potential led to a significant discrepancy: 

the conventional PBE functional underestimated the band gap (1.21 eV), whereas the HSE06 functional 

provided a more accurate estimate of 2.12–2.24 eV [34]. Since the PBE functional tends to underestimate 

the band gap, we calculated the band structure using the hybrid screened functional HSE06, which is 

known to describe the exchange–correlation energy of electrons in solids more accurately (Figure 3). 

Role of van der Waals (vdW) interactions: (Figure 3A and Figure 3B) Atomically projected electronic 

band structure of MoS₂ in bulk (Figure 3A) and monolayer (Figure 3B) forms. The blue and red bands 

represent the S and Mo atomic projections, respectively. Figures 3A and Figure 3B are reproduced from 

[35]. (Figure 3C and Figure 3D) The HSE-calculated electronic band gap as a function of (Figure 3C) the 

number of layers, using different XC functionals for the internal expansion of bilayer phosphorene, and 

(Figure 3D) the interlayer spacing. The inset in (Figure 3D) shows the interlayer spacing in bilayer 

phosphorene. Figures 3C and Figure 3D are from [36]. 

3.1.2. Optical/Photonic properties 

In addition to electronic properties, the optical and photonic properties of 2D materials play a crucial role 

in many applications, including optoelectronic devices (photodetectors, LEDs), energy systems (water 

splitting, catalysis), and optical coatings. Characteristic parameters such as optical absorption peaks, 

reflectivity, dielectric constant, refractive index, and optical conductivity have been extensively calculated 
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using DFT. In the context of materials science and optics, the frequency-dependent Kramers–Kronig 

relations have emerged as a key tool for analyzing the optical response of materials under the influence of 

external photons. Specifically, the complex dielectric function is expressed as ε(ω) = ε₁(ω) + iε₂(ω), 

where ε₁(ω) represents the real part associated with energy storage, and ε₂(ω) represents the imaginary 

part characterizing energy dissipation [37]. Calculations of ε₁(ω) and ε₂(ω) using DFT help elucidate the 

optical mechanisms of materials. For example, studies on 2D Ni₂P₂S₂ and Ni₂P₂Se₂ have demonstrated 

potential applications in optical coatings, waveguides, and photonic devices due to their stable dielectric 

behavior [37]. Similarly, DFT calculations for boron nitride, carbon nitride, boron carbide, and the 

ternary boron–carbon–nitride (BCN) system reveal significant modifications of optical properties upon 

doping, particularly with varying nitrogen content [38]. These results confirm that DFT is a powerful tool 

for predicting and guiding the design of 2D materials for next-generation photonic applications. 

3.1.3. Material defects and environmental interactions 

Defects in 2D materials play a key role in tailoring their electronic, optical, and chemical properties, 

thereby affecting the performance of nanoscale devices. Common defects include point defects 

(vacancies, interstitials, and dopants) and extended defects (dislocations and grain boundaries). Defect 

formation can occur naturally at thermodynamic equilibrium, such as thermally induced point defects, or 

result in more complex structures like lattice dislocations and grain boundaries. Some defects also arise 

from the finite dimensions of the crystal, such as edges and surfaces. Additionally, defects can be 

intentionally introduced through electron or ion irradiation, or via chemical treatments. Theoretical 

calculations based on DFT are frequently employed to investigate the formation, stability, and properties 

of these defects. Defects in 2D materials not only influence their fundamental properties but also enable 

numerous potential applications in electronics, catalysis, and photonics. In nanoelectronics, vacancies in 

MoS₂ have been shown to create trap states within the band gap, affecting electron transport and the 

stability of thin-channel transistors [39, 40]. In graphene, doping with nitrogen (N) or boron (B) can tune 

conductivity, open a band gap, and improve performance in field-effect transistors (FETs) [41]. In 

catalysis, sulfur vacancies in MoS₂ serve as efficient active sites for the hydrogen evolution reaction 

(HER), enhancing catalytic activity compared to the defect-free structure [42]. Defects are also important 

in photonics: in hBN, nitrogen vacancies and complex defect centers can generate single-photon emitters, 

which are highly promising for quantum computing and optical communication applications [43]. 

Consequently, the design and controlled engineering of defects has become a critical strategy for 

developing 2D materials for next-generation electronic and optoelectronic devices. 

3.2. Molecular dynamics: Practical applications 
MD is one of the primary tools used to study the evolution of 2D materials at the atomic scale. MD is a 

powerful computational method that enables the simulation of atomic motion over time based on 

interatomic potentials. In the field of 2D materials, MD has proven to play a crucial role in predicting and 

analyzing mechanical and thermal properties, defect dynamics, as well as interlayer interactions in 

complex 2D systems. 

3.2.1. Synthesis techniques 

MD simulations are an important tool in the study of 2D materials, particularly for characterizing 

synthesis techniques and structural evolution at the atomic level. Through MD, researchers can observe 

the self-assembly of atoms, nucleation, 2D layer growth, as well as the effects of temperature, pressure, 
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and catalysts on the final structure. Chemical vapor deposition (CVD) is a widely used synthesis 

technique for fabricating high-quality, large-area single- or multilayer graphene. However, due to limited 

atomic-level understanding, many challenges have hindered its development. With the advancement of 

MD, the growth mechanisms and reaction pathways of carbon-based precursors have been thoroughly 

elucidated. For example, Meng et al. [44] studied the effects of carbon concentration and temperature on 

graphene growth kinetics on Ni(111) surfaces using elemental carbon precursors, thereby determining 

an optimal defect-annealing temperature of 1000 K. Similarly, Chen et al. [45] investigated the CVD 

pathway of CH₄ decomposition and the subsequent evolution from carbon segments to graphene. 

Furthermore, MD has been combined with Atomic Layer Deposition (ALD) technology to simulate the 

synthesis of 2D materials with atomic precision. ALD enables the creation of uniform thin layers with 

controlled thickness through cycles of adsorption and removal of precursors on the material surface [46]. 

MD can simulate each of these steps in detail, including precursor adsorption, surface chemical reactions, 

and the temporal growth of the thin layer. For instance, MD simulations of boron nitride (BN) thin-film 

growth using BCl₃ and NH₃ on Si(100) surfaces [47] revealed the initial growth mechanisms of BN and its 

evolution at different temperatures (750 K, 1000 K, 1250 K, 1750 K, and 2000 K), thereby identifying 

suitable conditions to promote film formation and growth. 

3.2.2. Mechanical properties studies 

The mechanical properties of 2D materials [48] are of particular interest in industrial applications, such 

as protective coatings [49] and diffusion barriers in electronic devices [50].  

 
Figure 4. Monolayers of graphene (top) and hBN (bottom) at different time intervals during nanoindentation 

simulations [52]. 

These properties can be quantified using various parameters [51], including Young’s modulus (Y), 

flexural strength (D), and fracture strain (ϵ). As discussed in previous sections, these quantities can be 

effectively estimated using MD simulations. MD allows scientists to calculate the mechanical 

characteristics of 2D materials with high accuracy, including elastic modulus, tensile strength, ductility, 

and elastic limit for materials such as graphene, MoS₂, WS₂, and phosphorene. Graphene, in particular, 

has been extensively studied due to its exceptional mechanical strength. For example, MD simulations 

have calculated the flexural strength of graphene to be approximately 1.2–1.3 eV [51,52], in good 

agreement with the experimental value of 1.17 eV [53]. Similarly, single-layer hBN has attracted attention 
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because of its unique mechanical properties [54], especially its stability at higher temperatures compared 

to graphene. MD simulations estimated the flexural strength of hBN to be 1.13 ± 0.02 eV, which closely 

matches the experimental value of 0.95 eV. The failure strain was calculated as 15%, in agreement with 

the experimental value of 12.5 ± 3% [55]. In a recent study, Patra et al. [53] examined the fracture 

behavior of graphene and hBN nanosheets over different time scales. In graphene, C atoms form chain-

like structures after the C–C bonds break (Figures 4a–4d), contributing to the exceptional strength of the 

nanosheets. In the case of a monolayer hBN, fracture initiates at point defects, which grow over time until 

the film completely fractures (Figures 4e–4h). 

3.2.3. Surface interactions and redox 

 
Figure 5. RMD snapshots during MoS2 oxidation at (a) 1400 K, 1500 K (b), and 1800 K (c)  at different time stages. 

The black, yellow, and red spheres represent molybdenum, sulfur, and oxygen atoms, respectively [56]. 

MD has become a powerful tool for studying the oxidation mechanisms of 2D materials, owing to its 

ability to simulate atomic dynamics and surface chemistry in real time. In 2D materials such as graphene, 

MoS₂, hBN, and phosphorene, oxidation typically begins with the adsorption and dissociation of O₂ 

molecules on the surface, which subsequently form oxygen clusters or generate oxidation defects. MD, 

particularly when using reactive force fields such as ReaxFF, can directly simulate the formation and 

breaking of chemical bonds during the process, enabling the observation of progression from the initial 

stage (adsorption and diffusion) to the later stage (stable oxide formation or structural degradation) on 

the pico to nanosecond timescale. For example, researchers have characterized the natural oxidation of 

MoS₂ thin films in an O₂ environment, revealing a three-step mechanism: adsorption of O₂ molecules, 

dissociation of O₂ into O atoms that bond with S, and the formation of SO₂ species that desorb, leaving 

surface defects that lead to structural degradation and corrosion [56,57] (Figure 5). In addition to 

elucidating oxidation mechanisms, MD can predict the influence of environmental factors on the process, 

such as temperature, oxygen pressure, and the presence of water or dissolved ions. This is particularly 

important for practical applications, where 2D materials often operate in atmospheric or electrochemical 

solution environments. For instance, besides analyzing the oxidation mechanism of MoS₂ in O₂ 

environments, the authors also investigated the effect of temperature on oxidation behavior (Figure 6). 
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Similarly, Roghayyeh Lotfi and colleagues [58] studied the effects of different environments (dry air, wet 

air, H₂O₂) on the oxidation of the Ti₃C₂ MXene structure. 

 
Figure 6. Comparison of MXene oxidation rates in three different environments (Ti: brown, C: green, O: red and H: 

white) [57]. 

3.2.4. Defects 

 
Figure 7. Four oxidation modes for defect containing graphene sheets. CO2 (a) and CO (b) are the modes generated 

for a defect containing graphene sheet [58]; (c) and (d) are pristine and bicrystalline graphene in the 

graphene/polyethylene system; (e) and (f) are pristine and wrinkled isolated planar bicrystalline graphene [60]. 

Schematic illustration of the random distribution of epoxide (–O–) functional groups at GBs of bicrystalline 

polycrystalline graphene in sandwich structure (g) and with damaged morphology with 50% epoxide coverage for 

21.8° ZZ bicrystalline graphene(h). Taken from [62]. 

The behavior of defects in materials is critical and can be effectively studied using computational 

methods. Using DFT, one can calculate the probability of defect formation at the atomic scale through 

defect formation energies or energy barriers for defect migration or diffusion. MD, on the other hand, 

provides a clear view of the mechanisms underlying the occurrence of point defects, dislocations, and 

grain boundaries, as well as their impact on material properties [58]. For example, Zheng et al. [59] 

investigated defect-promoted oxygen adsorption and desorption of gasification products (CO, CO₂) on 

graphene. As shown in Figures 7a and Figures 7b, uncoordinated C surface atoms facilitate the 

functionalization of the surface with oxygen by weakening the O=O bond. The adsorption of excess O 

atoms further induces the dissociation of CO₂ or CO through the formation of epoxy groups, increasing 
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the size of the defect. Xu et al. [60] studied the mechanical properties of graphene oxide (GO) with grain 

boundaries (GBs) and demonstrated that GBs stimulate the formation of defect clusters, providing 

pathways for defect propagation. This leads to a noticeable decrease in tensile strength, which may be 

exacerbated by bonding between defects and high oxygen content functional groups at the GBs. Verma et 

al. [61] examined the interfacial properties of graphene/polyethylene (PE) nanoparticles using MD and 

found that bicrystalline graphene containing GBs outperformed pristine graphene in enhancing the 

tensile strength, shear strength, and adhesive strength of the reinforced PE nanoparticles, the results are 

shown in Figure 7c-7h. To address the advantages and limitations of DFT and MD potentials, we provide a 

systematic comparison, focusing on the technical strengths and weaknesses of these methods for 2D 

materials: 

For DFT:  

-Recognition and Limitations: Local density approximation (LDA) and generalized gradient 

approximation (GGA), such as PBE, often underestimate the band gap and have difficulty accurately 

describing van der Waals (vdW) interactions, which are critical in layered 2D materials.  

-Comparative Analysis of Higher-Level Methods: Hybrid Functionals: Hybrid functionals significantly 

improve band gap predictions for 2D semiconductors. For example, PBE predicts 1.21 eV while HSE06 

predicts 2.12–2.24 eV for RhTeCl. HSE06 represents a good compromise between computational cost and 

accuracy for electronic properties.  

-GW Approximation: GW, combined with the Bethe–Salpeter Equation (BSE) for optical properties, is 

considered the gold standard for calculating band gaps and excitons, although it incurs very high 

computational costs.  

-vdW Corrections: Including vdW corrections (vdW-DFT, DFT-D2, DFT-D3) is essential for accurately 

modeling multilayer 2D materials.  

For MD Interaction Potentials: 

-Comparative Analysis: Key potentials include Tersoff, ReaxFF, and machine learning-based potentials. 

-Tersoff/Stillinger–Weber: Strengths: Computationally efficient for simple C/Si systems, e.g., calculating 

the mechanical properties of graphene or h-BN. Weaknesses: Cannot model chemical reactions or bond 

formation/breaking. 

-ReaxFF: Strengths: Capable of simulating complex chemical processes, including oxidation, reduction, 

and surface reactions. Limitations: Accuracy depends strongly on parameterization and is more 

computationally expensive than classical potentials. 

-Machine Learning Potentials (ML Potentials/GAP/DeePMD): These provide an optimized solution, 

combining DFT-level accuracy with MD-level computational efficiency. 

3.2.5. Limitations and future directions 

In this paper, we provide an overview of recent atomistic simulation studies on the properties of 2D 

materials, with particular emphasis on first-principles calculations and MD simulations. DFT and 

Molecular Dynamics are powerful tools for simulating material properties and gaining insight into the 

mechanisms underlying material behavior. They provide crucial information on how materials are 

organized and formed at the atomic and molecular levels. Although DFT and MD have proven essential in 

the study of 2D materials, several limitations remain. MD simulations are typically restricted to systems 

containing a few thousand to a few million atoms and timescales ranging from pico- to nanoseconds, 

whereas real-world phenomena such as crack propagation, long-term oxidation, or self-assembly of 
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heterostructures occur on much larger spatial and temporal scales. Additionally, the accuracy of 

traditional force fields, such as Lennard–Jones, Tersoff, or Stillinger–Weber, is limited in describing 

complex chemical interactions, particularly oxidation, reduction, or doping processes. Reactive force 

fields (ReaxFF) have improved this situation, but parameter tuning still requires significant effort and 

computational resources [32]. Similarly, DFT with standard exchange correlation approximations (GGA, 

LDA) often underestimates the band gap and struggles to describe systems with weak van der Waals 

interactions or complex electron dynamics. Advanced methods, such as DFT+U, hybrid functionals 

(HSE06), or GW, provide more accurate results but at much higher computational cost [25, 63]. 

Moreover, most current simulations are performed under vacuum or idealized conditions, which do not 

fully reflect realistic environments such as ionic solutions, aqueous media, or mixed gases [64]. The scope 

of use, benefits and limitations of different types of potential energy functions in material simulation are 

summarized in Table 1. 
Table 1. The capabilities, strengths and limitations of different calculation methods. 

Method Properties Strengths Limitations 

 

DFT 

(LDA/GGA) 

Electronic structure, 

band gap, mechanics, 

optics. 

Quantum mechanical 

foundation, precise 

calculation of basic 

structure. 

Underestimation of band gap. 

High computational cost for 

large systems (> several 

hundred atoms). 

DFT 

(Hybrid/GW) 

Band gap, Exciton, 

precise electronic 

structure. 

High accuracy, overcomes 

the band gap problem of 

GGA/LDA. 

The computational cost is very 

high, limited to very small 

systems (< 100 atoms). 

MD (Classic - 

Tersoff/LJ) 

Mechanics, 

thermodynamics, 

physical dynamics 

Simulate large systems 

(millions of atoms) and 

long times (ns). 

Cannot describe chemical 

reactions. Accuracy depends 

on interaction potential. 

 

MD (Reaction - 

ReaxFF) 

Reaction Kinetics, 

Oxidation/Reduction, 

Defec ts 

Describe the 

breaking/forming of       

chemical bond                         

s accurately. 

Requires complex parameter 

tuning. More expensive than 

classical MD. 

 

ML-Potentials 

Mechanics, Heat, 

Reactions, Defects at 

Large Scale. 

 DFT level accuracy with MD 

level computation speed. Large 

DFT dataset required for 

training 

To overcome these limitations and expand the applications of DFT and MD, several future research 

directions have been proposed: 

-Development of more accurate reactive force fields or the application of machine learning-based 

methods (ML-based force fields) will enable more efficient simulations of complex chemical processes, 

including oxidation, reduction, doping, and catalytic reactions on 2D materials [65]. 

-Multiscale modeling approaches that combine DFT, MD, and continuum or coarse-grained MD can help 

predict mechanical, thermal, electrical, and chemical properties of materials under realistic conditions. 

-Extension to realistic environmental conditions, including temperature, pressure, ionic solutions, or 

mixed gases, will improve the evaluation of materials for applications such as sensors, batteries, and 

catalysis. 

-Integration of artificial intelligence (AI) and machine learning (ML) with MD and DFT can help predict 

forces and material properties based on existing data, accelerate simulations, and scale up research [66]. 
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These strategies are expected to accelerate the discovery of new 2D materials and complex 

heterostructures, thereby narrowing the gap between simulation and experiment and optimizing 

performance for high-tech applications. 

Specific applications include: 

-Generating accurate interaction potentials for 2D materials and simulating thermal transport or defect 

kinetics at large scales (millions of atoms) with DFT level accuracy, which classical MD cannot achieve. 

-High throughput screening (HTS): Using DFT to screen thousands of candidate 2D materials from large 

databases, predicting new stable materials with desirable band gaps for electronic and photonic 

applications. HTS accelerates the 2D material discovery cycle. 

-DFT–MD hybrid/multiscale methods: Hybrid approaches are emerging as an essential trend to overcome 

the size and timescale limitations of standalone DFT or MD. 

-Ab initio MD (AIMD): Forces are computed directly from DFT during MD simulations. For example, AIMD 

can capture the exact chemical reaction mechanism in the initial oxidation of MoS₂, which ReaxFF may 

not describe accurately. 

-MD/continuum approaches: MD simulations of atomic-level processes, such as crack propagation, can be 

transferred to continuum mechanics models to simulate larger-scale 2D materials, as discussed in the 

proposed research directions. 
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