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1. Introduction

Corrosion of metals is considered a spontaneous phenomenon in which chemical or electrochemical

reactions between metals and their surroundings occur, leading to the gradual deterioration of the
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mechanical, chemical and electrical properties of the material. According to the World Corrosion
Organization, the global economic losses due to metal corrosion have been estimated at 2.5-3.0 trillion
USD per year, equivalent to 3-4% of global GDP [1]. In addition to economic losses, serious safety risks
have also been recorded in the energy, aviation, defense and infrastructure sectors, where high
requirements for reliability and longevity of materials are placed. Previous experimental methods such as
electrochemical measurements, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV),
scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) have been widely used to determine
the corrosion rate, surface morphology and corrosion product composition. However, these methods
mainly reflect phenomena at the macroscopic or mesoscopic level, while the actual corrosion
mechanisms are initiated by electron, adsorption, diffusion and chemical reaction processes at the atomic
level. Therefore, in the last two decades, computational simulation has been considered as an
indispensable complementary tool to help elucidate the microscopic nature of the corrosion process. In
the field of simulation, Density Functional Theory and Molecular Dynamics (MD) simulation have been
recognized as the two most widely applied key techniques. With DFT, an advanced quantum mechanical
method, the electronic structure, adsorption energy, charge density and energy levels of molecules or
ions on the metal surface have been accurately determined. Through this, the adsorption mechanisms,
the passive film formation process, and the role of alloying elements in enhancing corrosion resistance
have been elucidated [2,3]. In addition, MD, a classical simulation tool based on Newton's equation of
motion, has been used to observe the time evolution of atoms and molecules, thereby allowing dynamic
processes such as ion diffusion (Cl~, SO,%7), inhibitor adsorption, or the formation and destruction of
protective oxide layers to be investigated in detail under different environmental conditions [4]. The
combination of DFT and MD has been shown to provide the ability to explain the microscopic mechanism
and predict corrosion behavior at the macroscopic level through multiscale modeling. During the period,
a large number of works were published, thereby confirming the central role of DFT and MD in the
research of anti-corrosion materials. For example, Oukhrib et al. (2021) [5] applied a combination of DFT,
Monte Carlo and MD to simulate the adsorption of pyrazolylnucleosides on the Cu (111) surface, thereby
determining the binding energy and stability of the organic inhibitor layer. Similarly, Wang et al. (2023)
[6] used DFT to analyze the corrosion mechanism of acetic acid on X80 steel, thereby demonstrating that
the undissociated acid molecules mainly act as proton sources rather than direct oxidants. Despite
significant advances, DFT- and MD-based corrosion simulations still face fundamental challenges related
to accessible time and length scales, realistic representation of electrochemical environments, and
quantitative experimental validation. Although reactive force fields, ab initio molecular dynamics, and
hybrid DFT-based approaches have been developed to address specific limitations of classical models
[7,8], constraints in system size, simulation duration, and the treatment of surface defects, electrolyte
effects, and applied potentials continue to limit predictive accuracy. Recently, the integration of machine
learning with DFT and MD has emerged as a promising strategy to enhance predictive capability and
accelerate materials screening [9,10]. Therefore, a systematic synthesis of recent progress (2020-2025),
methodological limitations, and emerging developments is essential to critically evaluate the current
state of the field and guide the rational design of corrosion-resistant materials. This review does not
present new experimental measurements; instead, it systematically integrates experimental data such as
EIS, XPS, SEM, and AFM reported in recent literature to validate and interpret DFT- and MD-based

corrosion models.
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2 Theoretical basis
2.1. Density functional theory

Density functional theory (DFT) was developed as a quantum mechanical method to describe many-
electron systems through electron density functions, instead of through the complicated wave functions
as in traditional methods. The foundation of DFT is based on two theorems Hohenberg-Kohn (1964), in
which the first theorem states that the energy of a quantum system is determined solely by the electron
density, and the second theorem shows that the most accurate electron density is the density that
minimizes the total energy of the system.
To describe the interacting electron system, the Kohn-Sham equation was established. In this framework,
a hypothetical electron system consisting of independent electrons is used to replace the real electron
system, provided that the two systems have the same electron density. Thanks to this approach, the
complex multi-particle problem is simplified into a set of single-particle equations, allowing the total
energy of the system to be determined through the expression:

E[n(r)] = Ts [n(r)] + Eex [n(r)] + Ex [n(r)] + Exc [n(r)] (1)
In which: Ts: is the kinetic energy of the non-interacting electron system, Eey: is the interaction energy
between the electron and the external field (such as the ion nucleus or the electric field), Eu: is the
Coulomb energy due to the classical electron-electron interaction, E.: is the exchange-correlation
energy, the most important part that determines the accuracy of the simulation.
In the field of corrosion research, Density Functional Theory (DFT) is often applied as an effective
computational tool to elucidate the interactions occurring at the atomic level along with changes in the
electronic structure. Through DFT, the basic characteristics of the interaction between metals and the
corrosive environment have been determined, including:
(1) The adsorption energy of typical molecules or ions such as H,0, 0,, CI~, SO,%” and organic inhibitors
on the metal surface has been calculated to evaluate the corrosion resistance and the tendency to form a
protective passive film;
(2) The electronic structure (density of states - DOS) has been analyzed to clarify the nature of the bond
between the metal and the adsorbent, thereby reflecting the degree of chemical interaction and the
distribution of electron density at the surface;
(3) The chemical reaction mechanism and reaction pathway of oxidation, reduction or protonation
processes on the metal surface have been determined, helping to understand the kinetic and
thermodynamic nature of the reaction stages [11-13].
A typical example is reported in the study of Gattinoni and Michaelides (2015) [13], in which DFT was
used to elucidate the adsorption mechanism of benzotriazole on Cu(111) surface. The simulation results
showed that Van der Waals interactions, hydrogen bonding and electrostatic forces play a dominant role
in determining the most stable adsorption configuration of the inhibitor molecule. In addition, recent
works [14,15] have shown that the addition of dispersion correction (DFT-D3, vdW-DF) or the use of
implicit solvent models significantly improves the accuracy of simulating realistic corrosive
environmental conditions. For material systems containing d or f electrons (such as oxides of Fe, Ni, Ti),
extended methods such as DFT+U or hybrid functionals (HSE06, PBEO) have been applied to more
accurately describe the strong correlations between local electrons. In these studies, adsorption
distances, electron density distributions and HOMO-LUMO energy differences are often used as
characteristic quantities to evaluate the inhibitor effectiveness or corrosion resistance of materials.
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Despite its extensive application, density functional theory inherently relies on approximations that may
influence the accuracy of corrosion-related predictions. Local Density Approximation (LDA) and
Generalized Gradient Approximation (GGA), particularly the widely used PBE functional, often
underestimate band gaps and may inadequately describe strongly correlated d-electron systems in
transition metal oxides. This limitation is especially critical when modeling passive films such as Fe,03 or
Cr,03, where electronic localization governs protective behavior. Although hybrid functionals (e.g.,
HSEO06) and DFT+U approaches improve electronic structure descriptions, they significantly increase
computational cost and remain sensitive to parameter selection. Furthermore, conventional DFT
calculations are typically conducted at 0 K and neglect entropic contributions, which can lead to
discrepancies when comparing with experimental corrosion phenomena under realistic temperature and

electrochemical conditions.
2.2. Molecular Dynamics (MD) simulations

The molecular dynamics (MD) simulation method is based on classical Newtonian mechanics, in which

the motion trajectory of each atom is determined by integrating the equations of motion over time:
2
mid—gi =-AU(1, 1, ... 1y) (2)
dt
where: AU is the potential energy of the system, which depends on the position of the atoms.
In corrosion research, molecular dynamics (MD) simulations are often applied to reproduce at the atomic
level the mechanisms occurring on the metal surface. Through MD, the adsorption and orientation of
corrosion inhibitor molecules on the metal surface are simulated; the diffusion of ions such as H*, Cl~, and
OH™ in the near-surface electrolyte layer is investigated; the formation, dissolution, and destruction of the
passive oxide film are reproduced; at the same time, the influence of environmental conditions such as
temperature, pH, ion concentration, and potential is also analyzed in detail. Current MD models are often
established as slab models, in which a metal surface (e.g., Fe(110), Cu(111), or Al(100)) is covered by a
solvent layer representing the corrosive environment (Hz0, Cl, metal, etc.). From these simulations,
important parameters such as the average adsorption energy (Eags), radial distribution function (RDF),
self-diffusion coefficient (D), and structural stability of the adsorbed layer are extracted and analyzed to
elucidate the nature and interaction mechanism between the corrosive environment and the metal
surface. MD methods are generally classified into three main types. First, classical molecular dynamics
simulations (Classical MD) are performed based on empirical potentials such as COMPASS, CHARMM, or
OPLS-AA. Second, reactive molecular dynamics simulation (ReaxFF) is used when it is necessary to
simulate the formation and breaking of chemical bonds, which is especially useful in studying oxidation
and oxide film formation [16]. Third, quantum molecular dynamics simulation (Ab initio MD) is
implemented when the forces acting between atoms are calculated directly from density functional
theory (DFT), which allows for a more accurate description of electronic properties but requires high
computational costs [17]. A typical demonstration of the effectiveness of this method is noted in the study
of Bala et al. (2025) [18], in which the adsorption process of imidazole compounds on steel surfaces in
acidic environments was simulated using MD. The configuration parallel to the metal surface was
determined to be the most stable adsorption state, and the resulting adsorption energy showed a clear
correlation with the corrosion inhibition efficiency observed experimentally.

2.3. Integration and comparison between DFT and MD
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Figure 1. [llustration of the connection between DFT and MD together to evaluate the properties of materials. From
the electronic structure in DFT combined with the molecular interactions at specific temperatures in MD will give
insights into the behavior of materials in different corrosive environments. (Source: E. et al., Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 2023, 667, 131388 [23])

Although DFT and MD are different in nature and simulation scale, the combination of these two
methods (DFT-MD coupling) provides a more comprehensive view of the metal corrosion
mechanism. DFT provides accurate information on the energy and electronic structure at the
quantum level, while MD simulates atomic dynamics on a longer time scale. The combination of
DFT and MD is usually carried out in three main directions: Sequential coupling: The results
from DFT (such as adsorption energy, binding parameters, atomic charges) are used as input to
MD, helping to simulate the adsorption process and atomic motion more accurately [19].
Concurrent coupling: The reaction zone is simulated by DFT, while the surrounding environment
is simulated by MD - also known as QM/MM hybrid model [20]. Parameter correction (DFT-
informed force field): Experimental potentials in MD (especially in the ReaxFF method) are
trained directly from DFT data, helping to better simulate complex systems such as oxides, alloys
or composite materials. The integrated DFT-MD method has proven effective in describing oxide
film formation, local corrosion mechanisms and predicting corrosion resistance of alloys.
Recently, studies by Zhao et al. (2024) [21] and Castillo-Robles et al. (2025) [22] also combined
DFT-MD with machine learning to determine adsorption energy and reconstruct virtual
corrosion surfaces, opening up a new direction for predictive materials modeling.
3. Application of density functional theory (DFT) in metal corrosion research
3.1. Adsorption Energy and Reactivity Descriptors
One of the most basic and common applications of DFT in corrosion research is to calculate the
adsorption energy (Eads) of corrosive molecules or ions (CI-, H,0, H*, 0;) and corrosion
inhibitors on metal surfaces. The adsorption energy is determined by the formula:

Eads = Esys - (Esurf + Emol ) (3)
Where Egys is the total energy of the system when the molecule is adsorbed onto the surface, Esurs
is the energy of the bare metal surface, and Emol is the energy of the free molecule in vacuum.
An Eags value < 0 indicates an exothermic (stable) adsorption process, and a more negative value
indicates a stronger binding between the adsorbent and the metal surface. Electronic

reactivation indices are also commonly used to complement the analysis of the adsorption
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mechanism, including: HOMO-LUMO energy gap (AE): determines the electron transfer ability;
Electronegativity (x) and chemical hardness (1): related to the tendency to electron reactivity;
Fukui index indicates the site with the strongest tendency to accept or donate electrons in the
molecule [24]. Studies show a close correlation between the adsorption energy calculated by
DFT and the experimentally measured inhibition efficiency. For example, Bala et al. (2025) [25]
used DFT to calculate the adsorption energy of a series of imidazole compounds on carbon steel,
finding that molecules with -OH and -NH, substituents gave larger negative adsorption energies
and exhibited higher inhibition efficiency in electrochemical experiments. Other works [26,27]
have shown that molecules with high HOMO energy levels (easily donating electrons) often form
stronger bonds with the metal surface, while molecules with low LUMO levels (easily accepting
electrons) increase the electrostatic adsorption capacity. Thus, DFT not only helps explain the
inhibition mechanism but also guides the design of new inhibitor molecules based on the
principle of “simulation-guided inhibitor design”.

3.2. Modeling of metal surfaces and interactions with intruding ions

In corrosion studies, simulation of metal surfaces is considered an important step to accurately
reproduce the interaction mechanism with intruding ions. By DFT, slab models consisting of 3-5
layers of metal atoms are usually established; in which, the top two layers are optimized for free
geometry, while the lower layers are fixed to simulate the bulk crystal. Metal surfaces such as
Fe(110), Cu(111), Al(100), Ni(111) and Mg(0001) are often chosen because of their high atomic
density and high energy stability. Through DFT simulations, the breakdown of the passive oxide
film has been attributed to the influence of Cl™ ions, which is considered the main agent causing
localized corrosion (pitting corrosion) [28]. In the study of Chen et al. (2025) [29], the
competitive adsorption between ClI™ and H,0 on the Fe(110) surface was simulated using DFT.
The negative adsorption energy of Cl™ (-2.34 eV) was determined to be larger than that of H,O (-
0.95 eV), indicating that the metal surface tends to be more susceptible to CI7, leading to the
destabilization of the protective oxide layer. Similarly, Wang et al. (2023) [30] showed that the
presence of CI™ reduces the energy barrier for proton extraction from acetic acid, resulting in a
significant increase in the corrosion rate of X80 steel. In addition to CI-, the role of SO,*~, NO3~,
and CO3*” ions has also been considered in recent studies [31]. The analysis of charge density
and density of states (PDOS) shows that SO,*~ generally has a weaker interaction than CI, so it
is less likely to cause damage to the protective oxide film.

3.3. Simulation of passive oxide film formation

In corrosion research, simulation of passive oxide film formation is considered an important
direction to understand the natural protection mechanism of metals. By DFT method, the
formation process of oxide systems such as Fe,03, Al,03, TiO, and Cr,03 has been simulated to
elucidate their role in preventing the diffusion of ions and electrons, thereby slowing down the
metal oxidation process. In the study by Zhao et al. (2024) [32], a hybrid DFT method was used
to simulate the formation of TiO, film on the titanium surface. The redistribution of electron

density at the metal-oxide interface was identified as a key factor in stabilizing the passive layer.
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Similarly, Li et al. (2024) [33] showed that in the Fe-Cr system, the presence of Cr promotes the
formation of a more stable Cr,03 layer, thereby improving the corrosion resistance of stainless
steel. The formation energy and energy barrier values obtained from DFT were used to
determine the rate-controlling stage of the oxide film formation process. In addition, the
application of the continuum solvation model was carried out to simulate the influence of the
electrolyte environment, helping the simulation results reflect the experimental conditions more
accurately [34].

3.4. Influence of alloying elements and crystal structure

In corrosion research, the DFT method is widely applied to evaluate the influence of alloying
elements on the corrosion resistance of materials. Elements such as Cr, Ni, Mo, Si and N are
believed to have the ability to change the local electronic structure of the metal surface, thereby
affecting the formation of oxide film or interacting with corrosive environment ions such as CI~,
0%, S047,....
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Figure 2. DFT simulation of the adsorption mechanism of corrosive ions and inhibitors on metal surfaces.
Electron density difference plots for the ‘Tilted’ (top row) and ‘Flat’ (bottom row) BTAH/Cu structures using

three representative vdW-inclusive functionals. Green represents the region of charge density depletion and
red regions of accumulation. The isosurface level is 0.002e/a03 for all structures. The distances between
the azole N2 and the surface and between the center of the benzene-like ring and the surface are given in
A. In the study of Arachchige et al. (2020) [35], the addition of Cr to the Fe-Ni system was shown to reduce
the density of states at the Fermi level causing the electron donation-acceptance process. Figure 1
schematically illustrates the hierarchical integration of density functional theory and molecular dynamics
simulations for corrosion studies, highlighting the complementary roles of electronic-level and atomistic-
scale modeling. In addition, Figure 2 presents representative electron density distributions and
adsorption configurations obtained from DFT calculations, which provide fundamental insights into the

interaction mechanisms between aggressive ions, inhibitor molecules, and metal surfaces.
4.Application of molecular dynamics (MD) simulation in metal corrosion
research.

4.1.Molecular dynamics (MD) simulation method
-22-
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MD is used as an important tool to study corrosion mechanisms in real environmental conditions, where
electrochemical reactions occur simultaneously with the diffusion and chaotic motion of ions and
molecules. Unlike DFT, which describes the static electronic state, MD allows direct observation of the
time evolution of particles in the system, reflecting more accurately the kinetics and interaction
mechanism between the material and the corrosion environment [36]. A typical MD model for corrosion
research is usually established with three main parts: Metal slab: built from 3-5 atomic layers, often
using Fe(110), Cu(111), Al(100), Mg(0001) or Ni(111) surfaces. Solvent layer: contains H,O molecules
with the correct density in reality to simulate the corrosive environment. Corrosive/inhibiting molecules
or ions: including CI7, S0,%", H* or inhibitory organic compounds such as benzotriazole, imidazole,
pyrazole, triazine, etc. The simulation process is usually conducted in three stages: (i) Geometry
optimization,
(ii) Equilibration at a specified temperature and pressure, (iii) Production simulation (production run)
lasting from tens to hundreds of nanoseconds. From this process, important physical quantities are
determined including the average adsorption energy (Eads, avg), radial distribution function (RDF),
diffusion coefficient (D) and orientation angle of the inhibitor molecule relative to the metal surface. A
prominent advantage of the MD method is the ability to simulate complex experimental conditions that
are difficult to handle with DFT, such as the effects of temperature, ion concentration, potential, or
solvent fluctuations. Thanks to that, MD allows visual description of the adsorption-desorption process,
molecular rearrangement in the protective layer, as well as the stability of the inhibitor film in an
aggressive environment. While molecular dynamics simulations provide valuable insights into the
dynamic evolution of corrosion processes, several intrinsic limitations should be acknowledged. Classical
MD simulations are highly dependent on the quality and transferability of empirical force fields, which
may not accurately capture charge transfer, polarization effects, or complex chemical reactions at metal-
electrolyte interfaces. In addition, the accessible simulation timescale, typically limited to nanoseconds, is
several orders of magnitude shorter than real corrosion processes that occur over hours, days, or even
years. Consequently, MD results often represent accelerated or idealized corrosion scenarios and should
be interpreted primarily in a comparative or mechanistic context rather than as direct quantitative
predictions.
4.2. Simulation of adsorption and orientation of corrosion inhibitors
A typical application of the MD method is the analysis of the adsorption configuration of corrosion
inhibitor molecules on metal surfaces. By examining the radial distribution function (RDF) between the
active atoms in the inhibitor molecule (N, O, S, m-ring) and the metal atoms (Fe, Cu, Al), the optimal
adsorption distance can be determined, which is usually in the range of 1.5-3.5 A for chemical adsorption
and 3.5-5.0 A for physical adsorption [37]. For example, Bala et al. (2025) used MD to examine the
adsorption of imidazole on the Fe(110) surface. The results showed that the molecule was oriented
parallel to the surface, thereby maximizing the m-d interaction and increasing the coverage area.
Similarly, Oukhrib et al. (2021) [20] simulated the adsorption of pyrazolylnucleoside derivatives on
Cu(111), finding that the -OH and -NH; groups form hydrogen bonds with the surface, stabilizing the
protective layer and preventing the penetration of Cl™ ions. Another important quantity in the analysis is
the interaction energy, which is averaged over the entire simulation time to evaluate the bond strength
between the inhibitor and the metal surface [38,39]

Eint = Etotal - (Esurface + Einhibitor + Esolution) (5)
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The more negative the Ei,c value, the more stable the inhibitor layer. These simulations can be directly
compared with the adsorption energy obtained from DFT, helping to verify the accuracy of both methods
[40].

4.3. Reactive Force Field

ReaxFF (Reactive Force Field) marks a major step forward in corrosion simulation, allowing for dynamic
chemical bond formation and breakdown, which is not possible with classical MD. In corrosion research,
ReaxFF is used to simulate the oxidation of metal surfaces, oxide film formation, as well as interactions
with water and CI” ions. Nevertheless, the predictive reliability of ReaxFF simulations strongly depends
on the quality of parameterization. Force fields developed for specific metal-oxygen-hydrogen systems
may lack transferability to different alloys, surface terminations, or electrolyte environments without
careful reparameterization. In some cases, overparameterization can result in artificially enhanced
reaction rates or unrealistic oxide growth kinetics. Therefore, ReaxFF-based corrosion simulations
should be systematically benchmarked against first-principles calculations and experimental
observations to ensure physical consistency. For example, Du et al. (2021) [41] used ReaxFF to
investigate the oxidation of Fe(110) surfaces in aqueous environments. The results showed that the
Fe,03 film was formed through the diffusion of O atoms from water molecules into the metal surface, and
then restructured into a stable oxide network. Similarly, Zhao et al. (2024) [42] applied ReaxFF to
simulate the dissolution of TiO, oxide films in acidic environments, and found that the breakage of Ti-O
bonds occurred mainly at low-energy surface defects. In addition, ReaxFF was also exploited to study the
electrochemical corrosion mechanism through the reaction between the metal and protons (H*) or
between Cl™ ions and the oxide layer. These simulation results contributed to the construction of a
quantitative corrosion rate model, showing good agreement with experimental electrochemical data [43].
4.4. Ab Initio MD (AIMD) simulation

Ab Initio Molecular Dynamics (AIMD) is a hybrid method between DFT and MD, in which the forces acting
on atoms are calculated directly from DFT at each time step. This approach allows for the simulation of
dynamic changes in the electronic structure during the evolution of the system, which is particularly
useful for studying the formation of the initial oxide film and the complex electronic interactions between
the metal and the etching molecules [44]. Zhao et al. (2024) [45] applied AIMD to simulate the early
stages of TiO, film formation, observing the redistribution of the electron density within a few
picoseconds, leading to stable Ti-O bonds. In addition, AIMD was used to investigate the metal-water
interface, providing detailed information on the structure of the first hydration layer - a factor that
determines the electrochemical stability of the metal surface. Despite the outstanding accuracy of AIMD,
the very high computational cost remains a major limitation, limiting the simulation range to a few
hundred atoms and the time to less than 50 picoseconds. However, the development of machine learning
potentials is gradually overcoming this barrier, opening up the possibility of AIMD simulations at
nanosecond scale with more reasonable computational costs [46].

4.5. MD applications in the prediction of anti-corrosion properties

Molecular dynamics (MD) simulations are not only used to describe corrosion mechanisms at the atomic
level, but also have the ability to predict the predictive corrosion performance of materials and inhibitors.
Parameters obtained from simulations such as interaction energy, coverage, ion diffusion coefficient, or
adsorption layer thickness can be used to quantitatively evaluate the protective ability of inhibitors

under specific environmental conditions. For example, Castillo-Robles et al. (2025) [11] combined MD
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simulation with a deep neural network (DNN) to build a model to predict the inhibitory effect of more
than 50 organic molecules on the Fe(110) surface. This hybrid MD-ML model showed a prediction error
of less than 5% compared to experimental data, demonstrating high reliability and generalizability. The
above results confirm the potential of automating the corrosion inhibitor design process, moving towards
the trend of “simulation-machine learning-synthesis-validation” in modern computational materials

science.

A Reactive Molecular Dynamics Simulation Study on
Corrosion Behaviors of Carbon Steel in Salt Spray

Results & Discussions
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Figure 3. [llustration of the initial configuration and the results obtained when using MD for steel surface corrosion

simulation.
5. MULTI SCALE INTEGRATED MODELING (DFT, MD, MACROSCOPIC)

5.1. Need for integrated modeling in corrosion research

Metal corrosion research is considered a multiscale problem, in which microscopic (electron movement,
atomic bonding), mesoscopic (adsorption, ion diffusion) and macroscopic (material degradation,
corrosion product formation) phenomena interact closely. No single simulation method - such as DFT or
MD - can fully cover the time and space scales of the corrosion process. Therefore, the current trend in
computational materials science is to develop multiscale integrated modeling, in which DFT, MD and
macroscopic models (such as continuum models, phase-field models or finite element method - FEM) are
linked sequentially or simultaneously to simulate the corrosion process more comprehensively. This
approach not only helps to elucidate the corrosion reaction mechanism at the atomic level, but also
allows for quantitative prediction of macroscopic quantities such as corrosion rate, material life, and
inhibitor protection efficiency, contributing to narrowing the gap between simulation and experiment.
5.2. Information Linkage Between Simulation Scales

The linkage between models in corrosion studies is often established in a “bottom-up” approach, in which
quantum data from DFT are used as input for MD simulations, and the MD results are further transferred
to macroscopic models to describe the corrosion process at larger scales. Specifically: From DFT — MD:
Parameters such as adsorption energy, bond strength, atomic charge, and force constant are extracted
from DFT results to calibrate the force field parameters in MD. For example, modern ReaxFF potential
sets such as Fe/O/H 2021 or Ni/Cr/0/H 2024 have been trained directly on the DFT database [48,49].
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From MD — macroscopic model: Data obtained from MD, including diffusion coefficient (D), surface
reaction rate (k), or average oxide film thickness (d), are transformed into input parameters for corrosion
kinetics or finite element models (FEM) at the macroscopic level [50]. Two-way coupling (DFT & MD <
Continuum): Some advanced integrative models also allow for feedback, in which when environmental
conditions (such as pH, potential, or ion concentration) change, the macroscopic model updates the
boundary conditions for MD or DFT, creating a closed feedback loop. This approach allows for the
simulation of adaptive corrosion evolution, reflecting the dynamic and nonlinear nature of metallic
systems in real environments [51].

5.3. DFT-MD-Phase Field Model for Localized Corrosion Prediction

Microstructure simulation approaches
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Figure 4. The diagram illustrates the relationship between DFT, MD and PFM simulation methods.

An advanced approach that is being strongly developed today is to integrate DFT and MD into a phase
field model (PFM) to simulate localized corrosion processes such as pitting or crevice corrosion. In this
model, the simulation scales are closely connected in a series: -DFT is used to determine the surface
energy, the reaction potential barrier of oxidation-reduction processes, as well as the electronic
characteristics of the defect region on the metal surface. -MD is used to simulate the diffusion of Cl” and
H* ions, and to monitor the formation of the initial oxide cluster, reflecting the dynamic interactions in
the electrolyte environment.

-PFM takes on the task of describing the spatiotemporal evolution of the pit or oxide layer using the
extended Ginzburg-Landau equation, in which the energy and diffusion parameters are taken from DFT
and MD. Zhao et al. (2024) [52] successfully demonstrated a DFT-MD-PFM model for the Fe-Cl system,
which accurately reproduced the pit growth morphology initiated by atomic surface defects. This model
not only allowed for simulation of pitting dynamics, but also predicted pit growth rates with deviations of
less than +10% from experimental data, demonstrating the quantitative prediction potential of multiscale

simulation in metal corrosion research.

6. COMBINATION OF DFT-MD WITH EXPERIMENTAL DATA (EXPERIMENTAL
VALIDATION)
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6.1. The role of experimental validation in simulation of corrosive materials

One of the core requirements of simulation studies is to ensure validation. The results obtained from DFT
or MD are only scientifically meaningful when verified by experimental data, to confirm that the
simulation model correctly reflects the physical and chemical nature of the system. In corrosion research,
the comparison between simulation and experiment is often done through three main groups of
techniques:

Electrochemical analysis: including electrochemical impedance spectroscopy (EIS), Tafel polarization
curve, determination of corrosion current density (Icorr) and corrosion potential (Ecorr); Surface
analysis: using XPS spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and
atomic force microscopy (AFM) to investigate the morphology and chemical composition of the surface;
Chemical analysis: applying FTIR, Raman, UV-Vis to identify the functional groups or chemical bonds of
the inhibitor after adsorption. The integration of DFT-MD simulation and experiment not only plays a
role in verifying the corrosion and adsorption mechanism, but also helps to calibrate and optimize the
model, thereby improving the reliability and predictability in anti-corrosion material studies [54].

6.2. Comparison of simulated adsorption energy and experimental inhibition efficiency

A common validation method in corrosion simulation studies is to compare the adsorption energy (Eads)
obtained from DFT/MD calculations with the corrosion inhibition efficiency (M%) determined through
electrochemical measurements. Several works have shown that there is a near linear correlation between
|Eads| and n%, in which a more negative adsorption energy indicates a higher protection of the metal
surface [55]. For example, Al-Amiery, et al. (2025) [56] studied a series of imidazole compounds on
Fe(110) surfaces using DFT and compared them with EIS (Electrochemical Impedance Spectroscopy)
results. The results showed that the compound with Eads = -1.95 eV achieved 94% inhibition efficiency,
while the compound with Eads = -0.88 eV achieved only 67%. The strong correlation (R? = 0.92) between
simulation and experimental data demonstrates the reliable prediction ability of this method for new
inhibitors, even before synthesis. It is important to emphasize that such correlations are not universally
applicable. In several reported studies, DFT calculations tend to overestimate adsorption energies due to
the neglect of explicit solvent effects, surface roughness, temperature fluctuations, and electrochemical
potential. These simplifications may lead to optimistic predictions of corrosion inhibition performance
that are not fully realized under experimental conditions. Consequently, adsorption energy should be
regarded as a qualitative descriptor for screening purposes rather than a sole quantitative predictor of
inhibitor efficiency. Similarly, Wang et al. (2023) [6] compared the interaction energy between Cl™ ions
and the X80 steel surface calculated by DFT with the experimental corrosion rate obtained from Tafel
measurements. The simulation model accurately reproduced the increasing trend of corrosion rate with
increasing Cl™ concentration, with an error of less than 8%, thereby confirming the validity of the
combined simulation-experiment method in predicting corrosion behavior.

6.3. Surface structure analysis by XPS and electron density simulation

XPS spectroscopy is considered a powerful tool to determine the oxidation state and chemical bonding
nature on the material surface after the adsorption of inhibitors or the formation of protective oxide film.
Meanwhile, DFT plays a role in supplementing quantitative information through the analysis of electron
density difference and Mulliken or Bader charge distribution, allowing direct comparison with
experimental XPS peaks. In the study by Zhao et al. (2024) [2], the DFT method was used to calculate the

electron density distribution on the Ti surface after the formation of the TiO, film. The simulation results
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showed that the electron density transfer from Ti atoms to O at the interface layer corresponded exactly
to the Ti 2p3/, = 458.7 eV peak in the experimental XPS spectrum - confirming the reliability and
consistency of the DFT model. Similarly, Chen et al. (2025) [11] studied the adsorption of benzotriazole
(BTA) molecules on the Cu(111) surface and found that the N 1s and Cu 2p peaks shifted in the direction
of Cu-N chemical bond formation. These results are in good agreement with the electron density and
local electronic distribution of states (PDOS) simulations, thereby confirming the ability of DFT to explain
in detail the interaction mechanism between the inhibitor and the metal surface.

6.4. Comparison of simulated adsorption structures and AFM/SEM images

Molecular dynamics (MD) and reactive force field (ReaxFF) simulations allow visual observation of
molecular adsorption and the formation of the inhibitor film on the metal surface. The obtained results
are often compared with experimental images from AFM or SEM, to confirm the morphology and
continuity of the protective layer. In the study of Shashirekha et al. (2024) [57], MD simulations showed
that imidazole molecules arranged themselves in parallel layers on the Fe(110) surface, forming a
protective film about 1.2 nm thick. This result is consistent with the experimental AFM image, which
shows a reduction in surface roughness from 95.4 nm to 27.8 nm after inhibitor treatment. In addition,
the SEM image shows a reduction in the pit density of more than 80%, which corresponds to the ReaxFF
simulation predicting that the inhibitor film significantly inhibited the diffusion of Cl” ions into the steel
surface.

6.5. Integration of simulation-experimental data in material lifetime assessment

Simulation (DFT-MD) and experimental data (EIS, XPS, SEM) are now integrated into lifetime prediction
models. This approach allows quantifying the relationship between electronic properties, microstructure,
and corrosion rate at the macroscopic scale. For example, Xiaohong Ji et al. (2022) [58] developed an
integrated model using adsorption energy from DFT, interaction energy from MD, and polarization
resistance from EIS to predict the lifetime of epoxy-TiO, coatings. The model results accurately estimated
the corrosion onset time with an error of less than 6% compared to the experiment, demonstrating the
effectiveness of the multi-data modeling approach in predicting material durability. Despite the
increasing accuracy of DFT-MD models, uncertainty quantification and reproducibility remain
underexplored. Variations in exchange-correlation functionals, force field parameterization, and
simulation protocols can lead to non-negligible discrepancies across studies. Establishing standardized
benchmarking datasets and reporting guidelines is therefore essential to enhance the transparency and

comparability of corrosion simulations.
7. RESEARCH TRENDS AND PROSPECTS

7.1. Research trends and future perspectives

Although recent studies increasingly report strong agreement between simulation results and
experimental observations, not all corrosion phenomena can be reliably captured by current DFT-MD
frameworks. Factors such as microstructural heterogeneity, grain boundaries, surface defects, and long-
term electrochemical aging remain challenging to model accurately at the atomistic scale. Addressing
these issues requires not only increased computational resources but also the development of
standardized validation protocols and uncertainty quantification strategies in corrosion simulations. In
the early stages, DFT and MD simulations were mainly used to explain the corrosion mechanism at the
atomic level, including ion adsorption, oxide film formation, or inhibitor protection. However, in recent

decades, the research focus has shifted from “descriptive simulation” to “predictive simulation” [59]. The
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development of high-performance computing (HPC) and parallel algorithms has significantly shortened
the simulation time, allowing thousands of structures to be processed in just a few hours. As a result, the
design of anti-corrosion materials can be carried out entirely on the simulation platform, before actual
synthesis and testing. Currently, large material databases such as Materials Project, Open Quantum
Materials Database (OQMD) and NOMAD Repository have integrated corrosion data, facilitating the
retrieval, analysis and training of machine learning models for predictive material design [60].
7.2. Application of artificial intelligence (AI) and machine learning
Al and machine learning (ML) are becoming the mainstream direction in computational materials for
corrosion protection. Instead of simulating individual compounds, deep learning models can learn the
relationship between electronic properties - structure - inhibition efficiency from thousands of data
samples, helping to quickly predict hundreds of potential inhibitor molecules [61]. Prominent research
directions include: Simulation-informed ML: Combining DFT (adsorption energy, PDOS) and MD
(coverage, diffusion coefficient) data as input to ML models - allowing prediction of inhibition efficiency
with an error of less than 5% [62]. Al supports the design of new inhibitor molecules: Generative Al
models based on GAN or Transformer networks can generate new molecular structures with high
predicted adsorption energy - aiming at the design of “automatic corrosion inhibition” [63].
7.3. Smart coating materials and self-healing mechanisms
A prominent research direction today is smart corrosion-resistant materials, especially self-healing
materials. These materials are capable of self-healing cracks or pits through a controlled release
mechanism of inhibitors, triggered by environmental factors such as pH, Cl” ions or surface potential [64].
In this area, DFT and MD play a central role in simulating the micromechanism of self-healing, including:
() Release of inhibitors from microcapsules or metal-organic frameworks (MOFs); (ii) Interaction
between inhibitors and metal surfaces; (iii) Re-formation of bonds, passive oxide films after damage. For
example, Li et al. (2024) [65] used MD simulations to investigate the release of 2-mercaptobenzothiazole
(MBT) from epoxy-MOF coatings in high ClI” ions concentrations. The results showed that the diffusion
rate of MBT increased threefold when the pH decreased to 4, allowing the membrane to recover its
passivation in just 20 min in good qualitative with the experimental EIS results.
7.4. Corrosion simulation in complex environments and new materials
Most previous studies focused on corrosion in neutral or mildly acidic aqueous environments. However,
the current trend has expanded to more harsh environments, including seawater, ionic liquids, plasma,
and high radiation environments [66]. In parallel, many advanced materials are being interested in
corrosion simulation, typically: High-Entropy Alloys (HEA): have complex crystal structures and superior
corrosion resistance, but the protection mechanism has not been fully elucidated; 2D materials such as
graphene, MoS,, MXene: potential to become ultra-thin anti-corrosion coatings; Conductive polymers and
inorganic-organic hybrid films: combine waterproofing, adhesion and conductivity, helping to reduce
electrochemical polarization [67]. Modern DFT-MD models allow for atomic-level description of surface
structure and reaction, thereby predicting protection mechanisms and optimizing coating structures,
contributing to the design of new generation anti-corrosion materials.
7.5. Development of Open Corrosion Databases
To promote global collaboration and data standardization, many research groups have developed Open
Corrosion Databases, integrating both simulation and experimental data. These databases store
comprehensive information such as adsorption energies from DFT, MD data (diffusion coefficients,
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interaction energies), and experimental EIS, XPS, AFM results. This approach is transforming corrosion
simulation from a manual, case-by-case approach to automated data mining, an important step towards
digitalized materials science.

7.6. Overview

Application of Machine Learning for the Classification of Corrosion Behavior in Different Environments for Material Selection of Stainless Steels
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Figure 5. Schematic illustration of the integration of artificial intelligence (AI) with DFT and MD simulations for
corrosion behavior classification and material selection. Simulation-derived descriptors and experimental data are
used to train machine learning models for predicting corrosion performance under different environments.

In the next decade, corrosion simulation research is expected to develop strongly towards the
comprehensive integration of DFT-MD-Al-experiment, forming a closed cycle of “simulation prediction
verification optimization”. In addition, real-time corrosion models will be developed, allowing data to be
updated directly from sensors and environmental conditions. The emergence of cloud-based simulation
platforms opens up the possibility of collaboration, sharing data and global computing resources,
significantly reducing research costs and time. Finally, when multi-scale simulation is combined with 3D
printing technology and nanomaterials, the design of anti-corrosion coatings with optimal structures at
the atomic level will become a reality, marking the transition from basic simulation to predictive material
design. Application of Al in the study of stainless steel corrosion (Source: S. Hakimian et al,

Computational Materials Science, 2023 [68]).

8. Conclusion

Over the past decade, significant advances in Density Functional Theory (DFT) and Molecular Dynamics
(MD) simulations have enabled new insights into corrosion mechanisms and the development of
corrosion-resistant materials at the atomic scale. DFT provides accurate descriptions of electronic
structures, adsorption energies, and reaction barriers on metal surfaces, while MD captures the kinetics
of adsorption, ion diffusion, and oxide film formation under near-experimental conditions. Their
combined use offers a multiscale framework linking atomic, mesoscopic, and macroscopic behaviors,
thereby deepening the quantitative understanding of corrosion processes. When integrated with
experimental techniques such as EIS, XPS, SEM, and AFM, DFT-MD models can achieve prediction errors
below 10%, highlighting their reliability and practical applicability. Furthermore, the rapid growth of
artificial intelligence and machine learning has driven the emergence of predictive corrosion materials
science, where DFT-MD data are used to design and optimize alloys, inhibitors, and self-healing coatings.

The development of open corrosion materials databases further supports data sharing, reuse, and
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automated materials design. Overall, DFT and MD have evolved from fundamental research tools into
strategic platforms for designing smart, sustainable, and environmentally friendly corrosion-resistant
materials. Beyond summarizing recent advances, this review critically evaluates the strengths,
limitations, and validation challenges of atomistic simulations, providing practical guidance for their

rational application in corrosion science.
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