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1. Introduction 
Corrosion of metals is considered a spontaneous phenomenon in which chemical or electrochemical 

reactions between metals and their surroundings occur, leading to the gradual deterioration of the 
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Abstract:  Over the past decade, atomistic simulation techniques, 

particularly Density Functional Theory (DFT) and Molecular Dynamics 

(MD), have become essential for understanding metal corrosion at 

electronic and atomic scales. DFT offers quantitative insight into adsorption 

energetics, electronic structure evolution, and reaction pathways governing 

metal–environment interactions, whereas MD enables dynamic modeling of 

ion transport, inhibitor adsorption, and passive film stability under realistic 

conditions. Recent studies show that integrating DFT and MD significantly 

improves predictive understanding of corrosion involving aggressive 

species (Cl⁻, SO₄²⁻, H⁺), oxide film growth, alloying effects, and inhibitor 

performance. Moreover, multiscale approaches linking atomistic 

simulations with continuum models allow quantitative prediction of 

corrosion kinetics and material degradation. This review summarizes 

advances in DFT- and MD-based corrosion modeling from 2020 to 2025, 

discusses key methodological limitations, and highlights emerging trends 

such as reactive force fields, ab initio molecular dynamics, and machine 

learning-assisted simulations, with emphasis on validation and predictive 

reliability. 
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mechanical, chemical and electrical properties of the material. According to the World Corrosion 

Organization, the global economic losses due to metal corrosion have been estimated at 2.5–3.0 trillion 

USD per year, equivalent to 3–4% of global GDP [1]. In addition to economic losses, serious safety risks 

have also been recorded in the energy, aviation, defense and infrastructure sectors, where high 

requirements for reliability and longevity of materials are placed. Previous experimental methods such as 

electrochemical measurements, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), 

scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) have been widely used to determine 

the corrosion rate, surface morphology and corrosion product composition. However, these methods 

mainly reflect phenomena at the macroscopic or mesoscopic level, while the actual corrosion 

mechanisms are initiated by electron, adsorption, diffusion and chemical reaction processes at the atomic 

level. Therefore, in the last two decades, computational simulation has been considered as an 

indispensable complementary tool to help elucidate the microscopic nature of the corrosion process. In 

the field of simulation, Density Functional Theory and Molecular Dynamics (MD) simulation have been 

recognized as the two most widely applied key techniques. With DFT, an advanced quantum mechanical 

method, the electronic structure, adsorption energy, charge density and energy levels of molecules or 

ions on the metal surface have been accurately determined. Through this, the adsorption mechanisms, 

the passive film formation process, and the role of alloying elements in enhancing corrosion resistance 

have been elucidated [2,3]. In addition, MD, a classical simulation tool based on Newton's equation of 

motion, has been used to observe the time evolution of atoms and molecules, thereby allowing dynamic 

processes such as ion diffusion (Cl⁻, SO₄²⁻), inhibitor adsorption, or the formation and destruction of 

protective oxide layers to be investigated in detail under different environmental conditions [4]. The 

combination of DFT and MD has been shown to provide the ability to explain the microscopic mechanism 

and predict corrosion behavior at the macroscopic level through multiscale modeling. During the period, 

a large number of works were published, thereby confirming the central role of DFT and MD in the 

research of anti-corrosion materials. For example, Oukhrib et al. (2021) [5] applied a combination of DFT, 

Monte Carlo and MD to simulate the adsorption of pyrazolylnucleosides on the Cu (111) surface, thereby 

determining the binding energy and stability of the organic inhibitor layer. Similarly, Wang et al. (2023) 

[6] used DFT to analyze the corrosion mechanism of acetic acid on X80 steel, thereby demonstrating that 

the undissociated acid molecules mainly act as proton sources rather than direct oxidants. Despite 

significant advances, DFT- and MD-based corrosion simulations still face fundamental challenges related 

to accessible time and length scales, realistic representation of electrochemical environments, and 

quantitative experimental validation. Although reactive force fields, ab initio molecular dynamics, and 

hybrid DFT-based approaches have been developed to address specific limitations of classical models 

[7,8], constraints in system size, simulation duration, and the treatment of surface defects, electrolyte 

effects, and applied potentials continue to limit predictive accuracy. Recently, the integration of machine 

learning with DFT and MD has emerged as a promising strategy to enhance predictive capability and 

accelerate materials screening [9,10]. Therefore, a systematic synthesis of recent progress (2020–2025), 

methodological limitations, and emerging developments is essential to critically evaluate the current 

state of the field and guide the rational design of corrosion-resistant materials. This review does not 

present new experimental measurements; instead, it systematically integrates experimental data such as 

EIS, XPS, SEM, and AFM reported in recent literature to validate and interpret DFT- and MD-based 

corrosion models. 
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2 Theoretical basis 
2.1. Density functional theory 
Density functional theory (DFT) was developed as a quantum mechanical method to describe many-

electron systems through electron density functions, instead of through the complicated wave functions 

as in traditional methods. The foundation of DFT is based on two theorems Hohenberg–Kohn (1964), in 

which the first theorem states that the energy of a quantum system is determined solely by the electron 

density, and the second theorem shows that the most accurate electron density is the density that 

minimizes the total energy of the system. 

To describe the interacting electron system, the Kohn–Sham equation was established. In this framework, 

a hypothetical electron system consisting of independent electrons is used to replace the real electron 

system, provided that the two systems have the same electron density. Thanks to this approach, the 

complex multi-particle problem is simplified into a set of single-particle equations, allowing the total 

energy of the system to be determined through the expression: 

E[n(r)] = Ts [n(r)] + Eext [n(r)] + EH [n(r)] + Exc [n(r)]                              (1) 

In which: Ts: is the kinetic energy of the non-interacting electron system, Eext: is the interaction energy 

between the electron and the external field (such as the ion nucleus or the electric field), EH: is the 

Coulomb energy due to the classical electron–electron interaction, Exc: is the exchange–correlation 

energy, the most important part that determines the accuracy of the simulation. 

In the field of corrosion research, Density Functional Theory (DFT) is often applied as an effective 

computational tool to elucidate the interactions occurring at the atomic level along with changes in the 

electronic structure. Through DFT, the basic characteristics of the interaction between metals and the 

corrosive environment have been determined, including: 

(1) The adsorption energy of typical molecules or ions such as H₂O, O₂, Cl⁻, SO₄²⁻ and organic inhibitors 

on the metal surface has been calculated to evaluate the corrosion resistance and the tendency to form a 

protective passive film; 

(2) The electronic structure (density of states – DOS) has been analyzed to clarify the nature of the bond 

between the metal and the adsorbent, thereby reflecting the degree of chemical interaction and the 

distribution of electron density at the surface; 

(3) The chemical reaction mechanism and reaction pathway of oxidation, reduction or protonation 

processes on the metal surface have been determined, helping to understand the kinetic and 

thermodynamic nature of the reaction stages [11–13]. 

A typical example is reported in the study of Gattinoni and Michaelides (2015) [13], in which DFT was 

used to elucidate the adsorption mechanism of benzotriazole on Cu(111) surface. The simulation results 

showed that Van der Waals interactions, hydrogen bonding and electrostatic forces play a dominant role 

in determining the most stable adsorption configuration of the inhibitor molecule. In addition, recent 

works [14,15] have shown that the addition of dispersion correction (DFT-D3, vdW-DF) or the use of 

implicit solvent models significantly improves the accuracy of simulating realistic corrosive 

environmental conditions. For material systems containing d or f electrons (such as oxides of Fe, Ni, Ti), 

extended methods such as DFT+U or hybrid functionals (HSE06, PBE0) have been applied to more 

accurately describe the strong correlations between local electrons. In these studies, adsorption 

distances, electron density distributions and HOMO–LUMO energy differences are often used as 

characteristic quantities to evaluate the inhibitor effectiveness or corrosion resistance of materials. 
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Despite its extensive application, density functional theory inherently relies on approximations that may 

influence the accuracy of corrosion-related predictions. Local Density Approximation (LDA) and 

Generalized Gradient Approximation (GGA), particularly the widely used PBE functional, often 

underestimate band gaps and may inadequately describe strongly correlated d-electron systems in 

transition metal oxides. This limitation is especially critical when modeling passive films such as Fe₂O₃ or 

Cr₂O₃, where electronic localization governs protective behavior. Although hybrid functionals (e.g., 

HSE06) and DFT+U approaches improve electronic structure descriptions, they significantly increase 

computational cost and remain sensitive to parameter selection. Furthermore, conventional DFT 

calculations are typically conducted at 0 K and neglect entropic contributions, which can lead to 

discrepancies when comparing with experimental corrosion phenomena under realistic temperature and 

electrochemical conditions. 

2.2. Molecular Dynamics (MD) simulations 
The molecular dynamics (MD) simulation method is based on classical Newtonian mechanics, in which 

the motion trajectory of each atom is determined by integrating the equations of motion over time: 

 
2

i
i 1 2 N2

d r
m  = - U r , r ... r

dt
                                              (2) 

where: ΔU is the potential energy of the system, which depends on the position of the atoms. 

In corrosion research, molecular dynamics (MD) simulations are often applied to reproduce at the atomic 

level the mechanisms occurring on the metal surface. Through MD, the adsorption and orientation of 

corrosion inhibitor molecules on the metal surface are simulated; the diffusion of ions such as H⁺, Cl⁻, and 

OH⁻ in the near-surface electrolyte layer is investigated; the formation, dissolution, and destruction of the 

passive oxide film are reproduced; at the same time, the influence of environmental conditions such as 

temperature, pH, ion concentration, and potential is also analyzed in detail. Current MD models are often 

established as slab models, in which a metal surface (e.g., Fe(110), Cu(111), or Al(100)) is covered by a 

solvent layer representing the corrosive environment (H20, Cl-, metal, etc.). From these simulations, 

important parameters such as the average adsorption energy (Eads), radial distribution function (RDF), 

self-diffusion coefficient (D), and structural stability of the adsorbed layer are extracted and analyzed to 

elucidate the nature and interaction mechanism between the corrosive environment and the metal 

surface. MD methods are generally classified into three main types. First, classical molecular dynamics 

simulations (Classical MD) are performed based on empirical potentials such as COMPASS, CHARMM, or 

OPLS-AA. Second, reactive molecular dynamics simulation (ReaxFF) is used when it is necessary to 

simulate the formation and breaking of chemical bonds, which is especially useful in studying oxidation 

and oxide film formation [16]. Third, quantum molecular dynamics simulation (Ab initio MD) is 

implemented when the forces acting between atoms are calculated directly from density functional 

theory (DFT), which allows for a more accurate description of electronic properties but requires high 

computational costs [17]. A typical demonstration of the effectiveness of this method is noted in the study 

of Bala et al. (2025) [18], in which the adsorption process of imidazole compounds on steel surfaces in 

acidic environments was simulated using MD. The configuration parallel to the metal surface was 

determined to be the most stable adsorption state, and the resulting adsorption energy showed a clear 

correlation with the corrosion inhibition efficiency observed experimentally. 

2.3. Integration and comparison between DFT and MD 
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Figure 1. Illustration of the connection between DFT and MD together to evaluate the properties of materials. From 

the electronic structure in DFT combined with the molecular interactions at specific temperatures in MD will give 

insights into the behavior of materials in different corrosive environments. (Source: E. et al., Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 2023, 667, 131388 [23]) 

Although DFT and MD are different in nature and simulation scale, the combination of these two 

methods (DFT–MD coupling) provides a more comprehensive view of the metal corrosion 

mechanism. DFT provides accurate information on the energy and electronic structure at the 

quantum level, while MD simulates atomic dynamics on a longer time scale. The combination of 

DFT and MD is usually carried out in three main directions: Sequential coupling: The results 

from DFT (such as adsorption energy, binding parameters, atomic charges) are used as input to 

MD, helping to simulate the adsorption process and atomic motion more accurately [19]. 

Concurrent coupling: The reaction zone is simulated by DFT, while the surrounding environment 

is simulated by MD – also known as QM/MM hybrid model [20]. Parameter correction (DFT-

informed force field): Experimental potentials in MD (especially in the ReaxFF method) are 

trained directly from DFT data, helping to better simulate complex systems such as oxides, alloys 

or composite materials. The integrated DFT-MD method has proven effective in describing oxide 

film formation, local corrosion mechanisms and predicting corrosion resistance of alloys. 

Recently, studies by Zhao et al. (2024) [21] and Castillo-Robles et al. (2025) [22] also combined 

DFT–MD with machine learning to determine adsorption energy and reconstruct virtual 

corrosion surfaces, opening up a new direction for predictive materials modeling. 

3. Application of density functional theory (DFT) in metal corrosion research 
3.1. Adsorption Energy and Reactivity Descriptors 

One of the most basic and common applications of DFT in corrosion research is to calculate the 

adsorption energy (Eads) of corrosive molecules or ions (Cl⁻, H₂O, H⁺, O₂) and corrosion 

inhibitors on metal surfaces. The adsorption energy is determined by the formula: 

Eads = Esys - (Esurf  + Emol  )                                 (3) 

Where Esys is the total energy of the system when the molecule is adsorbed onto the surface, Esurf 

is the energy of the bare metal surface, and Emol is the energy of the free molecule in vacuum.  

An Eads value < 0 indicates an exothermic (stable) adsorption process, and a more negative value 

indicates a stronger binding between the adsorbent and the metal surface. Electronic 

reactivation indices are also commonly used to complement the analysis of the adsorption 
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mechanism, including: HOMO–LUMO energy gap (ΔE): determines the electron transfer ability; 

Electronegativity (χ) and chemical hardness (η): related to the tendency to electron reactivity; 

Fukui index indicates the site with the strongest tendency to accept or donate electrons in the 

molecule [24]. Studies show a close correlation between the adsorption energy calculated by 

DFT and the experimentally measured inhibition efficiency. For example, Bala et al. (2025) [25] 

used DFT to calculate the adsorption energy of a series of imidazole compounds on carbon steel, 

finding that molecules with -OH and -NH₂ substituents gave larger negative adsorption energies 

and exhibited higher inhibition efficiency in electrochemical experiments. Other works [26,27] 

have shown that molecules with high HOMO energy levels (easily donating electrons) often form 

stronger bonds with the metal surface, while molecules with low LUMO levels (easily accepting 

electrons) increase the electrostatic adsorption capacity. Thus, DFT not only helps explain the 

inhibition mechanism but also guides the design of new inhibitor molecules based on the 

principle of “simulation-guided inhibitor design”. 

3.2. Modeling of metal surfaces and interactions with intruding ions 

In corrosion studies, simulation of metal surfaces is considered an important step to accurately 

reproduce the interaction mechanism with intruding ions. By DFT, slab models consisting of 3–5 

layers of metal atoms are usually established; in which, the top two layers are optimized for free 

geometry, while the lower layers are fixed to simulate the bulk crystal. Metal surfaces such as 

Fe(110), Cu(111), Al(100), Ni(111) and Mg(0001) are often chosen because of their high atomic 

density and high energy stability. Through DFT simulations, the breakdown of the passive oxide 

film has been attributed to the influence of Cl⁻ ions, which is considered the main agent causing 

localized corrosion (pitting corrosion) [28]. In the study of Chen et al. (2025) [29], the 

competitive adsorption between Cl⁻ and H₂O on the Fe(110) surface was simulated using DFT. 

The negative adsorption energy of Cl⁻ (-2.34 eV) was determined to be larger than that of H₂O (-

0.95 eV), indicating that the metal surface tends to be more susceptible to Cl⁻, leading to the 

destabilization of the protective oxide layer. Similarly, Wang et al. (2023) [30] showed that the 

presence of Cl⁻ reduces the energy barrier for proton extraction from acetic acid, resulting in a 

significant increase in the corrosion rate of X80 steel. In addition to Cl⁻, the role of SO₄²⁻, NO₃⁻, 

and CO₃²⁻ ions has also been considered in recent studies [31]. The analysis of charge density 

and density of states (PDOS) shows that SO₄²⁻ generally has a weaker interaction than Cl⁻, so it 

is less likely to cause damage to the protective oxide film. 

3.3. Simulation of passive oxide film formation 

In corrosion research, simulation of passive oxide film formation is considered an important 

direction to understand the natural protection mechanism of metals. By DFT method, the 

formation process of oxide systems such as Fe₂O₃, Al₂O₃, TiO₂ and Cr₂O₃ has been simulated to 

elucidate their role in preventing the diffusion of ions and electrons, thereby slowing down the 

metal oxidation process. In the study by Zhao et al. (2024) [32], a hybrid DFT method was used 

to simulate the formation of TiO₂ film on the titanium surface. The redistribution of electron 

density at the metal-oxide interface was identified as a key factor in stabilizing the passive layer. 
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Similarly, Li et al. (2024) [33] showed that in the Fe-Cr system, the presence of Cr promotes the 

formation of a more stable Cr₂O₃ layer, thereby improving the corrosion resistance of stainless 

steel. The formation energy and energy barrier values obtained from DFT were used to 

determine the rate-controlling stage of the oxide film formation process. In addition, the 

application of the continuum solvation model was carried out to simulate the influence of the 

electrolyte environment, helping the simulation results reflect the experimental conditions more 

accurately [34]. 

3.4. Influence of alloying elements and crystal structure 

In corrosion research, the DFT method is widely applied to evaluate the influence of alloying 

elements on the corrosion resistance of materials. Elements such as Cr, Ni, Mo, Si and N are 

believed to have the ability to change the local electronic structure of the metal surface, thereby 

affecting the formation of oxide film or interacting with corrosive environment ions such as Cl⁻, 

O2-, SO42-,…. 

 
Figure 2. DFT simulation of the adsorption mechanism of corrosive ions and inhibitors on metal surfaces. 

Electron density difference plots for the ‘Tilted’ (top row) and ‘Flat’ (bottom row) BTAH/Cu structures using 

three representative vdW-inclusive functionals. Green represents the region of charge density depletion and 

red regions of accumulation. The isosurface level is 0.002e/a03 for all structures. The distances between 

the azole N2 and the surface and between the center of the benzene-like ring and the surface are given in 

Å. In the study of Arachchige et al. (2020) [35], the addition of Cr to the Fe–Ni system was shown to reduce 

the density of states at the Fermi level, causing the electron donation-acceptance process. Figure 1 

schematically illustrates the hierarchical integration of density functional theory and molecular dynamics 

simulations for corrosion studies, highlighting the complementary roles of electronic-level and atomistic-

scale modeling. In addition, Figure 2 presents representative electron density distributions and 

adsorption configurations obtained from DFT calculations, which provide fundamental insights into the 

interaction mechanisms between aggressive ions, inhibitor molecules, and metal surfaces. 

4.Application of molecular dynamics (MD) simulation in metal corrosion 

research. 
4.1.Molecular dynamics (MD) simulation method 
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MD is used as an important tool to study corrosion mechanisms in real environmental conditions, where 

electrochemical reactions occur simultaneously with the diffusion and chaotic motion of ions and 

molecules. Unlike DFT, which describes the static electronic state, MD allows direct observation of the 

time evolution of particles in the system, reflecting more accurately the kinetics and interaction 

mechanism between the material and the corrosion environment [36]. A typical MD model for corrosion 

research is usually established with three main parts: Metal slab: built from 3–5 atomic layers, often 

using Fe(110), Cu(111), Al(100), Mg(0001) or Ni(111) surfaces. Solvent layer: contains H₂O molecules 

with the correct density in reality to simulate the corrosive environment. Corrosive/inhibiting molecules 

or ions: including Cl⁻, SO₄²⁻, H⁺ or inhibitory organic compounds such as benzotriazole, imidazole, 

pyrazole, triazine, etc. The simulation process is usually conducted in three stages: (i) Geometry 

optimization, 

(ii) Equilibration at a specified temperature and pressure, (iii) Production simulation (production run) 

lasting from tens to hundreds of nanoseconds. From this process, important physical quantities are 

determined including the average adsorption energy (Eads, avg), radial distribution function (RDF), 

diffusion coefficient (D) and orientation angle of the inhibitor molecule relative to the metal surface. A 

prominent advantage of the MD method is the ability to simulate complex experimental conditions that 

are difficult to handle with DFT, such as the effects of temperature, ion concentration, potential, or 

solvent fluctuations. Thanks to that, MD allows visual description of the adsorption-desorption process, 

molecular rearrangement in the protective layer, as well as the stability of the inhibitor film in an 

aggressive environment. While molecular dynamics simulations provide valuable insights into the 

dynamic evolution of corrosion processes, several intrinsic limitations should be acknowledged. Classical 

MD simulations are highly dependent on the quality and transferability of empirical force fields, which 

may not accurately capture charge transfer, polarization effects, or complex chemical reactions at metal–

electrolyte interfaces. In addition, the accessible simulation timescale, typically limited to nanoseconds, is 

several orders of magnitude shorter than real corrosion processes that occur over hours, days, or even 

years. Consequently, MD results often represent accelerated or idealized corrosion scenarios and should 

be interpreted primarily in a comparative or mechanistic context rather than as direct quantitative 

predictions. 

4.2. Simulation of adsorption and orientation of corrosion inhibitors 
A typical application of the MD method is the analysis of the adsorption configuration of corrosion 

inhibitor molecules on metal surfaces. By examining the radial distribution function (RDF) between the 

active atoms in the inhibitor molecule (N, O, S, π-ring) and the metal atoms (Fe, Cu, Al), the optimal 

adsorption distance can be determined, which is usually in the range of 1.5–3.5 Å for chemical adsorption 

and 3.5–5.0 Å for physical adsorption [37]. For example, Bala et al. (2025) used MD to examine the 

adsorption of imidazole on the Fe(110) surface. The results showed that the molecule was oriented 

parallel to the surface, thereby maximizing the π–d interaction and increasing the coverage area. 

Similarly, Oukhrib et al. (2021) [20] simulated the adsorption of pyrazolylnucleoside derivatives on 

Cu(111), finding that the –OH and –NH₂ groups form hydrogen bonds with the surface, stabilizing the 

protective layer and preventing the penetration of Cl⁻ ions. Another important quantity in the analysis is 

the interaction energy, which is averaged over the entire simulation time to evaluate the bond strength 

between the inhibitor and the metal surface [38,39] 

Eint = Etotal – (Esurface + Einhibitor + Esolution)                                   (5) 
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The more negative the Eint value, the more stable the inhibitor layer. These simulations can be directly 

compared with the adsorption energy obtained from DFT, helping to verify the accuracy of both methods 

[40]. 

4.3. Reactive Force Field 
ReaxFF (Reactive Force Field) marks a major step forward in corrosion simulation, allowing for dynamic 

chemical bond formation and breakdown, which is not possible with classical MD. In corrosion research, 

ReaxFF is used to simulate the oxidation of metal surfaces, oxide film formation, as well as interactions 

with water and Cl⁻ ions. Nevertheless, the predictive reliability of ReaxFF simulations strongly depends 

on the quality of parameterization. Force fields developed for specific metal–oxygen–hydrogen systems 

may lack transferability to different alloys, surface terminations, or electrolyte environments without 

careful reparameterization. In some cases, overparameterization can result in artificially enhanced 

reaction rates or unrealistic oxide growth kinetics. Therefore, ReaxFF-based corrosion simulations 

should be systematically benchmarked against first-principles calculations and experimental 

observations to ensure physical consistency. For example, Du et al. (2021) [41] used ReaxFF to 

investigate the oxidation of Fe(110) surfaces in aqueous environments. The results showed that the 

Fe₂O₃ film was formed through the diffusion of O atoms from water molecules into the metal surface, and 

then restructured into a stable oxide network. Similarly, Zhao et al. (2024) [42] applied ReaxFF to 

simulate the dissolution of TiO₂ oxide films in acidic environments, and found that the breakage of Ti–O 

bonds occurred mainly at low-energy surface defects. In addition, ReaxFF was also exploited to study the 

electrochemical corrosion mechanism through the reaction between the metal and protons (H⁺) or 

between Cl⁻ ions and the oxide layer. These simulation results contributed to the construction of a 

quantitative corrosion rate model, showing good agreement with experimental electrochemical data [43]. 

4.4. Ab Initio MD (AIMD) simulation 
Ab Initio Molecular Dynamics (AIMD) is a hybrid method between DFT and MD, in which the forces acting 

on atoms are calculated directly from DFT at each time step. This approach allows for the simulation of 

dynamic changes in the electronic structure during the evolution of the system, which is particularly 

useful for studying the formation of the initial oxide film and the complex electronic interactions between 

the metal and the etching molecules [44]. Zhao et al. (2024) [45] applied AIMD to simulate the early 

stages of TiO₂ film formation, observing the redistribution of the electron density within a few 

picoseconds, leading to stable Ti–O bonds. In addition, AIMD was used to investigate the metal–water 

interface, providing detailed information on the structure of the first hydration layer – a factor that 

determines the electrochemical stability of the metal surface. Despite the outstanding accuracy of AIMD, 

the very high computational cost remains a major limitation, limiting the simulation range to a few 

hundred atoms and the time to less than 50 picoseconds. However, the development of machine learning 

potentials is gradually overcoming this barrier, opening up the possibility of AIMD simulations at 

nanosecond scale with more reasonable computational costs [46]. 

4.5. MD applications in the prediction of anti-corrosion properties 
Molecular dynamics (MD) simulations are not only used to describe corrosion mechanisms at the atomic 

level, but also have the ability to predict the predictive corrosion performance of materials and inhibitors. 

Parameters obtained from simulations such as interaction energy, coverage, ion diffusion coefficient, or 

adsorption layer thickness can be used to quantitatively evaluate the protective ability of inhibitors 

under specific environmental conditions. For example, Castillo-Robles et al. (2025) [11] combined MD 
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simulation with a deep neural network (DNN) to build a model to predict the inhibitory effect of more 

than 50 organic molecules on the Fe(110) surface. This hybrid MD-ML model showed a prediction error 

of less than 5% compared to experimental data, demonstrating high reliability and generalizability. The 

above results confirm the potential of automating the corrosion inhibitor design process, moving towards 

the trend of “simulation-machine learning-synthesis-validation” in modern computational materials 

science. 

 
Figure 3. Illustration of the initial configuration and the results obtained when using MD for steel surface corrosion 

simulation. 

5. MULTI SCALE INTEGRATED MODELING (DFT, MD,  MACROSCOPIC) 
5.1. Need for integrated modeling in corrosion research 
Metal corrosion research is considered a multiscale problem, in which microscopic (electron movement, 

atomic bonding), mesoscopic (adsorption, ion diffusion) and macroscopic (material degradation, 

corrosion product formation) phenomena interact closely. No single simulation method - such as DFT or 

MD - can fully cover the time and space scales of the corrosion process. Therefore, the current trend in 

computational materials science is to develop multiscale integrated modeling, in which DFT, MD and 

macroscopic models (such as continuum models, phase-field models or finite element method – FEM) are 

linked sequentially or simultaneously to simulate the corrosion process more comprehensively. This 

approach not only helps to elucidate the corrosion reaction mechanism at the atomic level, but also 

allows for quantitative prediction of macroscopic quantities such as corrosion rate, material life, and 

inhibitor protection efficiency, contributing to narrowing the gap between simulation and experiment. 

5.2. Information Linkage Between Simulation Scales 
The linkage between models in corrosion studies is often established in a “bottom-up” approach, in which 

quantum data from DFT are used as input for MD simulations, and the MD results are further transferred 

to macroscopic models to describe the corrosion process at larger scales. Specifically: From DFT → MD: 

Parameters such as adsorption energy, bond strength, atomic charge, and force constant are extracted 

from DFT results to calibrate the force field parameters in MD. For example, modern ReaxFF potential 

sets such as Fe/O/H 2021 or Ni/Cr/O/H 2024 have been trained directly on the DFT database [48,49]. 
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From MD → macroscopic model: Data obtained from MD, including diffusion coefϐicient (D), surface 

reaction rate (k), or average oxide film thickness (d), are transformed into input parameters for corrosion 

kinetics or finite element models (FEM) at the macroscopic level [50]. Two-way coupling (DFT ↔ MD ↔ 

Continuum): Some advanced integrative models also allow for feedback, in which when environmental 

conditions (such as pH, potential, or ion concentration) change, the macroscopic model updates the 

boundary conditions for MD or DFT, creating a closed feedback loop. This approach allows for the 

simulation of adaptive corrosion evolution, reflecting the dynamic and nonlinear nature of metallic 

systems in real environments [51]. 

5.3. DFT–MD–Phase Field Model for Localized Corrosion Prediction 

 
Figure 4. The diagram illustrates the relationship between DFT, MD and PFM simulation methods. 

An advanced approach that is being strongly developed today is to integrate DFT and MD into a phase 

field model (PFM) to simulate localized corrosion processes such as pitting or crevice corrosion. In this 

model, the simulation scales are closely connected in a series: -DFT is used to determine the surface 

energy, the reaction potential barrier of oxidation-reduction processes, as well as the electronic 

characteristics of the defect region on the metal surface. -MD is used to simulate the diffusion of Cl⁻ and 

H⁺ ions, and to monitor the formation of the initial oxide cluster, reϐlecting the dynamic interactions in 

the electrolyte environment. 

-PFM takes on the task of describing the spatiotemporal evolution of the pit or oxide layer using the 

extended Ginzburg–Landau equation, in which the energy and diffusion parameters are taken from DFT 

and MD. Zhao et al. (2024) [52] successfully demonstrated a DFT-MD-PFM model for the Fe-Cl system, 

which accurately reproduced the pit growth morphology initiated by atomic surface defects. This model 

not only allowed for simulation of pitting dynamics, but also predicted pit growth rates with deviations of 

less than ±10% from experimental data, demonstrating the quantitative prediction potential of multiscale 

simulation in metal corrosion research. 

6. COMBINATION OF DFT–MD WITH EXPERIMENTAL DATA (EXPERIMENTAL 

VALIDATION) 
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6.1. The role of experimental validation in simulation of corrosive materials 
One of the core requirements of simulation studies is to ensure validation. The results obtained from DFT 

or MD are only scientifically meaningful when verified by experimental data, to confirm that the 

simulation model correctly reflects the physical and chemical nature of the system. In corrosion research, 

the comparison between simulation and experiment is often done through three main groups of 

techniques: 

Electrochemical analysis: including electrochemical impedance spectroscopy (EIS), Tafel polarization 

curve, determination of corrosion current density (Icorr) and corrosion potential (Ecorr); Surface 

analysis: using XPS spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and 

atomic force microscopy (AFM) to investigate the morphology and chemical composition of the surface; 

Chemical analysis: applying FTIR, Raman, UV–Vis to identify the functional groups or chemical bonds of 

the inhibitor after adsorption. The integration of DFT–MD simulation and experiment not only plays a 

role in verifying the corrosion and adsorption mechanism, but also helps to calibrate and optimize the 

model, thereby improving the reliability and predictability in anti-corrosion material studies [54]. 

6.2. Comparison of simulated adsorption energy and experimental inhibition efficiency 
A common validation method in corrosion simulation studies is to compare the adsorption energy (Eads) 

obtained from DFT/MD calculations with the corrosion inhibition efficiency (η%) determined through 

electrochemical measurements. Several works have shown that there is a near linear correlation between 

|Eads| and η%, in which a more negative adsorption energy indicates a higher protection of the metal 

surface [55]. For example, Al-Amiery, et al. (2025) [56] studied a series of imidazole compounds on 

Fe(110) surfaces using DFT and compared them with EIS (Electrochemical Impedance Spectroscopy) 

results. The results showed that the compound with Eads = -1.95 eV achieved 94% inhibition efficiency, 

while the compound with Eads = −0.88 eV achieved only 67%. The strong correlation (R² = 0.92) between 

simulation and experimental data demonstrates the reliable prediction ability of this method for new 

inhibitors, even before synthesis. It is important to emphasize that such correlations are not universally 

applicable. In several reported studies, DFT calculations tend to overestimate adsorption energies due to 

the neglect of explicit solvent effects, surface roughness, temperature fluctuations, and electrochemical 

potential. These simplifications may lead to optimistic predictions of corrosion inhibition performance 

that are not fully realized under experimental conditions. Consequently, adsorption energy should be 

regarded as a qualitative descriptor for screening purposes rather than a sole quantitative predictor of 

inhibitor efficiency. Similarly, Wang et al. (2023) [6] compared the interaction energy between Cl⁻ ions 

and the X80 steel surface calculated by DFT with the experimental corrosion rate obtained from Tafel 

measurements. The simulation model accurately reproduced the increasing trend of corrosion rate with 

increasing Cl⁻ concentration, with an error of less than 8%, thereby conϐirming the validity of the 

combined simulation-experiment method in predicting corrosion behavior. 

6.3. Surface structure analysis by XPS and electron density simulation 
XPS spectroscopy is considered a powerful tool to determine the oxidation state and chemical bonding 

nature on the material surface after the adsorption of inhibitors or the formation of protective oxide film. 

Meanwhile, DFT plays a role in supplementing quantitative information through the analysis of electron 

density difference and Mulliken or Bader charge distribution, allowing direct comparison with 

experimental XPS peaks. In the study by Zhao et al. (2024) [2], the DFT method was used to calculate the 

electron density distribution on the Ti surface after the formation of the TiO₂ film. The simulation results 
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showed that the electron density transfer from Ti atoms to O at the interface layer corresponded exactly 

to the Ti 2p₃/₂ = 458.7 eV peak in the experimental XPS spectrum – confirming the reliability and 

consistency of the DFT model. Similarly, Chen et al. (2025) [11] studied the adsorption of benzotriazole 

(BTA) molecules on the Cu(111) surface and found that the N 1s and Cu 2p peaks shifted in the direction 

of Cu–N chemical bond formation. These results are in good agreement with the electron density and 

local electronic distribution of states (PDOS) simulations, thereby confirming the ability of DFT to explain 

in detail the interaction mechanism between the inhibitor and the metal surface. 

6.4. Comparison of simulated adsorption structures and AFM/SEM images 
Molecular dynamics (MD) and reactive force field (ReaxFF) simulations allow visual observation of 

molecular adsorption and the formation of the inhibitor film on the metal surface. The obtained results 

are often compared with experimental images from AFM or SEM, to confirm the morphology and 

continuity of the protective layer. In the study of Shashirekha et al. (2024) [57], MD simulations showed 

that imidazole molecules arranged themselves in parallel layers on the Fe(110) surface, forming a 

protective film about 1.2 nm thick. This result is consistent with the experimental AFM image, which 

shows a reduction in surface roughness from 95.4 nm to 27.8 nm after inhibitor treatment. In addition, 

the SEM image shows a reduction in the pit density of more than 80%, which corresponds to the ReaxFF 

simulation predicting that the inhibitor film significantly inhibited the diffusion of Cl⁻ ions into the steel 

surface. 

6.5. Integration of simulation-experimental data in material lifetime assessment 
Simulation (DFT-MD) and experimental data (EIS, XPS, SEM) are now integrated into lifetime prediction 

models. This approach allows quantifying the relationship between electronic properties, microstructure, 

and corrosion rate at the macroscopic scale. For example, Xiaohong Ji et al. (2022) [58] developed an 

integrated model using adsorption energy from DFT, interaction energy from MD, and polarization 

resistance from EIS to predict the lifetime of epoxy-TiO₂ coatings. The model results accurately estimated 

the corrosion onset time with an error of less than 6% compared to the experiment, demonstrating the 

effectiveness of the multi-data modeling approach in predicting material durability. Despite the 

increasing accuracy of DFT–MD models, uncertainty quantification and reproducibility remain 

underexplored. Variations in exchange–correlation functionals, force field parameterization, and 

simulation protocols can lead to non-negligible discrepancies across studies. Establishing standardized 

benchmarking datasets and reporting guidelines is therefore essential to enhance the transparency and 

comparability of corrosion simulations. 

7. RESEARCH TRENDS AND PROSPECTS 
7.1. Research trends and future perspectives 
Although recent studies increasingly report strong agreement between simulation results and 

experimental observations, not all corrosion phenomena can be reliably captured by current DFT–MD 

frameworks. Factors such as microstructural heterogeneity, grain boundaries, surface defects, and long-

term electrochemical aging remain challenging to model accurately at the atomistic scale. Addressing 

these issues requires not only increased computational resources but also the development of 

standardized validation protocols and uncertainty quantification strategies in corrosion simulations. In 

the early stages, DFT and MD simulations were mainly used to explain the corrosion mechanism at the 

atomic level, including ion adsorption, oxide film formation, or inhibitor protection. However, in recent 

decades, the research focus has shifted from “descriptive simulation” to “predictive simulation” [59]. The 
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development of high-performance computing (HPC) and parallel algorithms has significantly shortened 

the simulation time, allowing thousands of structures to be processed in just a few hours. As a result, the 

design of anti-corrosion materials can be carried out entirely on the simulation platform, before actual 

synthesis and testing. Currently, large material databases such as Materials Project, Open Quantum 

Materials Database (OQMD) and NOMAD Repository have integrated corrosion data, facilitating the 

retrieval, analysis and training of machine learning models for predictive material design [60].  

7.2. Application of artificial intelligence (AI) and machine learning 
AI and machine learning (ML) are becoming the mainstream direction in computational materials for 

corrosion protection. Instead of simulating individual compounds, deep learning models can learn the 

relationship between electronic properties – structure – inhibition efficiency from thousands of data 

samples, helping to quickly predict hundreds of potential inhibitor molecules [61]. Prominent research 

directions include: Simulation-informed ML: Combining DFT (adsorption energy, PDOS) and MD 

(coverage, diffusion coefficient) data as input to ML models – allowing prediction of inhibition efficiency 

with an error of less than 5% [62]. AI supports the design of new inhibitor molecules: Generative AI 

models based on GAN or Transformer networks can generate new molecular structures with high 

predicted adsorption energy – aiming at the design of “automatic corrosion inhibition” [63]. 

7.3. Smart coating materials and self-healing mechanisms 
A prominent research direction today is smart corrosion-resistant materials, especially self-healing 

materials. These materials are capable of self-healing cracks or pits through a controlled release 

mechanism of inhibitors, triggered by environmental factors such as pH, Cl⁻ ions or surface potential [64]. 

In this area, DFT and MD play a central role in simulating the micromechanism of self-healing, including:  

(i) Release of inhibitors from microcapsules or metal–organic frameworks (MOFs); (ii) Interaction 

between inhibitors and metal surfaces; (iii) Re-formation of bonds, passive oxide films after damage. For 

example, Li et al. (2024) [65] used MD simulations to investigate the release of 2-mercaptobenzothiazole 

(MBT) from epoxy–MOF coatings in high Cl⁻ ions concentrations. The results showed that the diffusion 

rate of MBT increased threefold when the pH decreased to 4, allowing the membrane to recover its 

passivation in just 20 min in good qualitative with the experimental EIS results. 

7.4. Corrosion simulation in complex environments and new materials 
Most previous studies focused on corrosion in neutral or mildly acidic aqueous environments. However, 

the current trend has expanded to more harsh environments, including seawater, ionic liquids, plasma, 

and high radiation environments [66]. In parallel, many advanced materials are being interested in 

corrosion simulation, typically: High-Entropy Alloys (HEA): have complex crystal structures and superior 

corrosion resistance, but the protection mechanism has not been fully elucidated; 2D materials such as 

graphene, MoS₂, MXene: potential to become ultra-thin anti-corrosion coatings; Conductive polymers and 

inorganic-organic hybrid films: combine waterproofing, adhesion and conductivity, helping to reduce 

electrochemical polarization [67]. Modern DFT-MD models allow for atomic-level description of surface 

structure and reaction, thereby predicting protection mechanisms and optimizing coating structures, 

contributing to the design of new generation anti-corrosion materials. 

7.5. Development of Open Corrosion Databases 
To promote global collaboration and data standardization, many research groups have developed Open 

Corrosion Databases, integrating both simulation and experimental data. These databases store 

comprehensive information such as adsorption energies from DFT, MD data (diffusion coefficients, 
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interaction energies), and experimental EIS, XPS, AFM results. This approach is transforming corrosion 

simulation from a manual, case-by-case approach to automated data mining, an important step towards 

digitalized materials science. 

7.6. Overview 

 
Figure 5. Schematic illustration of the integration of artificial intelligence (AI) with DFT and MD simulations for 

corrosion behavior classification and material selection. Simulation-derived descriptors and experimental data are 

used to train machine learning models for predicting corrosion performance under different environments. 

In the next decade, corrosion simulation research is expected to develop strongly towards the 

comprehensive integration of DFT-MD-AI-experiment, forming a closed cycle of “simulation prediction 

verification optimization”. In addition, real-time corrosion models will be developed, allowing data to be 

updated directly from sensors and environmental conditions.  The emergence of cloud-based simulation 

platforms opens up the possibility of collaboration, sharing data and global computing resources, 

significantly reducing research costs and time. Finally, when multi-scale simulation is combined with 3D 

printing technology and nanomaterials, the design of anti-corrosion coatings with optimal structures at 

the atomic level will become a reality, marking the transition from basic simulation to predictive material 

design. Application of AI in the study of stainless steel corrosion (Source: S. Hakimian et al., 

Computational Materials Science, 2023 [68]). 

8. Conclusion 
Over the past decade, significant advances in Density Functional Theory (DFT) and Molecular Dynamics 

(MD) simulations have enabled new insights into corrosion mechanisms and the development of 

corrosion-resistant materials at the atomic scale. DFT provides accurate descriptions of electronic 

structures, adsorption energies, and reaction barriers on metal surfaces, while MD captures the kinetics 

of adsorption, ion diffusion, and oxide film formation under near-experimental conditions. Their 

combined use offers a multiscale framework linking atomic, mesoscopic, and macroscopic behaviors, 

thereby deepening the quantitative understanding of corrosion processes. When integrated with 

experimental techniques such as EIS, XPS, SEM, and AFM, DFT–MD models can achieve prediction errors 

below 10%, highlighting their reliability and practical applicability. Furthermore, the rapid growth of 

artificial intelligence and machine learning has driven the emergence of predictive corrosion materials 

science, where DFT–MD data are used to design and optimize alloys, inhibitors, and self-healing coatings. 

The development of open corrosion materials databases further supports data sharing, reuse, and 
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automated materials design. Overall, DFT and MD have evolved from fundamental research tools into 

strategic platforms for designing smart, sustainable, and environmentally friendly corrosion-resistant 

materials. Beyond summarizing recent advances, this review critically evaluates the strengths, 

limitations, and validation challenges of atomistic simulations, providing practical guidance for their 

rational application in corrosion science. 
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