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Abstract: This review provides an updated perspective on the
transformative role of computational simulation in the design and
discovery of binary alloys for advanced technologies. Unlike traditional
trial and error methods, molecular dynamics (MD) and density
functional theory (DFT) simulations now deliver atomistic insights into
structure property relationships, enabling more predictive materials
design. Recent developments demonstrate that hybrid strategies
integrating DFT, MD, machine learning (ML), and multiscale modeling
are accelerating the discovery of high performance alloys. The article
emphasizes the novelty of simulation-driven design frameworks while
identifying critical research challenges, including scalability, force-field
accuracy, and the integration of simulation with digital twin concepts.
Through selected case studies ranging from semiconductors and
biocompatible biomedical alloys to energy materials and emerging 2D
binary systems this review argues that computational simulation is
shifting from a supplementary role to a central driver of innovation in
modern materials science.
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1. Introduction.

The discovery and rational design of advanced functional materials constitute a cornerstone of

technological innovation in the twenty first century. Among these, binary alloys comprising two
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constituent elements represent one of the most fundamental yet versatile material classes, owing to their
tunable structural, electronic, and thermal properties. Their technological significance spans a broad
range of applications, including aerospace engineering, semiconductor devices, energy storage,
heterogeneous catalysis, and biomedical systems [1]. Historically, alloy development has been dominated
by labor-intensive experimental methodologies based on iterative synthesis and characterization. While
effective, such trial and error approaches demand extensive time and resources and are increasingly
misaligned with the accelerating demand for materials tailored to next-generation technologies such as
renewable energy platforms, quantum devices, and precision medicine [2]. In response, computational
simulation has emerged as a paradigm-shifting framework for materials discovery. Enabled by advances
in high performance computing (HPC), graphics processing unit (GPU) acceleration, and artificial
intelligence (Al), simulations are now capable of probing atomistic interactions and predicting emergent
macroscopic behaviors prior to experimental realization [3]. Central to these developments are
quantum-mechanical methods such as density functional theory (DFT), which achieve an effective
balance between predictive accuracy and computational tractability [4]. Complementarily, molecular
dynamics (MD) simulations provide a dynamic perspective, enabling the exploration of temperature-
dependent and time evolving phenomena in complex alloy systems [5]. Recent simulation-based studies
have further substantiated these advantages, demonstrating how molecular dynamics and first-
principles approaches can elucidate crystallization mechanisms, phase transitions, and electronic
properties in representative binary systems such as Au-Cu, Ag-Au, Ni-Au, and W-Si alloys [6-11]. These
investigations confirm the predictive capability of atomistic simulations in capturing microstructural
evolution and thermodynamic behavior, thereby bridging the gap between theoretical modeling and
experimental observation. The integration of data-driven methodologies has further amplified these
capabilities. Machine learning (ML) and deep learning (DL) algorithms, when coupled with high-
dimensional materials descriptors and advanced feature-selection techniques, have demonstrated the
capacity to uncover latent structure property relationships beyond the reach of conventional analysis.
Notably, supervised learning models such as random forests, support vector machines, and neural
networks have been successfully applied to predict phase stability, mechanical resilience, and thermal
transport properties in binary and multicomponent alloy systems [12-14]. Large-scale initiatives in
materials informatics have provided the essential data infrastructure for these advances. Resources such
as the Materials Genome Initiative (MGI), the Novel Materials Discovery (NOMAD) repository, the Open
Knowledgebase of Interatomic Models (OpenKIM), and Automatic Flow for Materials Discovery Library
(AFLOWLIB) offer extensive datasets encompassing DFT-calculated properties, crystallographic
structures, elastic constants, and more [15-18]. These repositories, coupled with high-throughput
computational frameworks such as AFLOW and the Materials Project, have dramatically expanded the
accessible design space for binary alloys, facilitating inverse design strategies and rapid screening of
candidate materials [16, 17]. Nevertheless, significant challenges persist. Real-world binary alloys exhibit
complexities compositional disorder, interfacial phenomena, kinetic constraints that are not fully
captured by idealized computational models. Furthermore, ensuring the transferability of ML models
trained on curated datasets to realistic processing environments remains an open problem [19]. To
address these limitations, the integration of first-principles modeling with machine learning, multiscale
simulation, and uncertainty quantification is increasingly recognized as essential for achieving robust

and generalizable predictions [20]. Taken together, the accelerated discovery of binary alloys through
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the synergy of computational simulation, Al, and informatics heralds a transformative shift in materials
science. By compressing design cycles from decades to mere months or even weeks this paradigm offers
unprecedented opportunities for meeting urgent global challenges, including energy sustainability,
decarbonization, and the development of next-generation electronic and biomedical technologies [21].
The following sections examine the computational methodologies, data infrastructures, machine learning
frameworks, and application domains that underpin this emerging approach to alloy discovery. The
content of this article focuses on focus on research and point out the role of simulation in the research
process, synthesizing binary alloys to show that in addition to experimental methods, theoretical
methods, simulation methods play a very important role in the research process. With outstanding
advantages such as quick survey, giving quite accurate results, creating a solid foundation for future
experimental processes. With the MD method used when researching the structure, phase transition
process of materials with large atomic numbers in the temperature region greater than room
temperature (a harsh region that experiments cannot reach), fast research while the DFT method
researches with materials with quantum structures of only a few dozen atoms, 0K temperature region,

slow research requires a server with a quantum computer configuration.
2. Fundamentals of computational simulation methods.

Computational methodologies have become integral to contemporary materials science, playing a pivotal
role in the accelerated discovery and design of binary alloys. These approaches provide unparalleled
insights into atomic-scale interactions, phase evolution, and electronic structure, offering predictive
capabilities that complement and often surpass traditional experimental techniques. Central to this
computational toolkit are MD, DFT, and hybrid strategies that integrate multiscale modeling with
machine learning. This section presents an overview of their theoretical foundations, current
methodological advances, and key applications in the study and engineering of binary alloy system:s.

2.1. Molecular dynamics.

Molecular dynamics (MD) provides a computational framework for simulating the temporal evolution of
atomic systems through numerical integration of Newton’s equations of motion, offering detailed insights
into material behavior over nanosecond to microsecond timescales [22]. This methodology relies on
predefined interatomic potentials, such as Embedded Atom Method (EAM), Modified Embedded Atom
Method (MEAM), and Tersoff potentials, and is particularly effective for capturing thermally activated
phenomena, including diffusion, grain boundary migration, dislocation dynamics, phase transformations,
and mechanical deformation in binary alloys [23]. Recent advances in GPU-accelerated MD packages,
including Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), GROningen MAchine
for Chemical Simulations (GROMACS), and Open Molecular Mechanics (OpenMM), have dramatically
expanded the accessible simulation scale, enabling the study of systems containing millions of atoms
within computationally feasible times [24]. These developments have facilitated large-scale
investigations of polycrystalline binary alloys, allowing accurate predictions of melting behavior, grain
boundary sliding, and crack propagation under applied mechanical loads [25]. Between 2022 and 2024,
multiple studies highlighted the capability of MD to model alloy responses under extreme conditions.
Shock compression simulations of Ni-Al and Cu-Zr alloys successfully reproduced experimentally
observed Hugoniot curves, while ultrafast laser heating studies elucidated nanoscale thermal transport
mechanisms relevant to additive manufacturing [26, 27]. Furthermore, the emergence of machine-

learned force fields, including Moment Tensor Potentials (MTP) and Neural Network Potentials, has
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significantly enhanced the predictive accuracy of MD simulations, approaching the fidelity of first
principles calculations [25].

2.2, Density functional theory.

Density Functional Theory (DFT) is a quantum-mechanical framework that treats the electron density as
the central variable, providing an approximate solution to the many-body Schrédinger equation via the
Kohn-Sham formalism [28]. DFT is highly effective in predicting ground-state properties of crystalline
systems, including lattice parameters, cohesive energies, bulk moduli, electronic band structures,
magnetic ordering, and vibrational spectra [29]. In the study of binary alloys, DFT has become
indispensable for calculating formation enthalpies, electronic density of states (DOS), phase diagrams,
and elastic constants, offering critical insights into phase stability, solute interactions, and miscibility
gaps parameters essential for rational alloy design [23]. Beyond equilibrium structures, DFT enables the
exploration of metastable or high-pressure phases that are often inaccessible to experimental
characterization [22]. Recent methodological advancements, including hybrid functionals (e.g., Heyd-
Scuseria-Ernzerhof 2006 (HSEO06)), Green’s function and screened Coulomb interaction (GW)
corrections, and Time-Dependent Density Functional Theory (TD-DFT), have expanded the predictive
scope to electronic band gaps and optical properties, facilitating the study of semiconductor and
optoelectronic alloys such as Si-Ge, In-Ga, and Sn-Se systems [24, 27]. Spin-polarized DFT calculations
have further enabled the investigation of magnetic binary alloys (e.g., Fe-Pt, Co-Ni), supporting the
design of materials for data storage and spintronic applications [29].

2.3. Hybrid approaches.

Despite the considerable capabilities of individual computational approaches, each method exhibits
intrinsic limitations: MD lacks quantum-level accuracy, whereas DFT becomes computationally
prohibitive for large or complex systems. To overcome these constraints, hybrid strategies that
synergistically integrate complementary methodologies have gained prominence in alloy modeling. A
widely employed approach is DFT-informed MD, wherein interatomic potentials for MD simulations are
parameterized using DFT-derived data, thereby ensuring fidelity in bonding behavior, defect energetics,
and thermodynamic predictions [25]. Machine learning (ML) potentials trained on high-fidelity DFT or
MD datasets such as MTP and Gaussian Approximation Potentials (GAP) offer a compelling compromise
between predictive accuracy and computational efficiency [25, 26]. Multiscale modeling frameworks
further extend this integration by coupling atomistic simulations with continuum level methods,
including phase-field modeling and finite element analysis, enabling the bridging of temporal and spatial
scales essential for simulating alloy solidification, coarsening, and microstructural deformation [1].
Recent Al-enhanced strategies leverage high-throughput DFT or MD data within ML pipelines to rapidly
explore extensive compositional spaces. Convolutional neural networks (CNNs) and graph based
architectures, such as Crystal Graph Convolutional Networks (CGCNN), have been successfully applied to
predict formation energies, mechanical hardness, and corrosion resistance across vast binary alloy
systems [23]. As materials science increasingly embraces inverse design and autonomous discovery
paradigms, these hybrid methodologies are poised to drive next generation alloy development. By
combining the quantitative rigor of quantum mechanics, the scalability of classical simulations, and the
pattern recognition power of Al, they enable accurate, efficient, and previously unattainable exploration
of complex alloy design spaces [27]. However, each method presents its own challenges. With the

experimental method, the biggest challenge is that the material size must be larger than 2nm or the
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research temperature must be below 4000 K because the measuring equipment used for research cannot
access it. With the simulation method, it is impossible to access too large a number of atoms. Too large a
number of atoms will greatly affect the processing speed of the server. This is the biggest limitation of the
simulation method, increasing the calculation time. To solve these problems, each method will choose the
conditions to optimize the research process. The results are determined by approximate methods to

determine the results to ensure that the results are close to the experiment.
3. Simulation driven discovery and optimization of binary alloys.

Computational simulation has fundamentally reshaped the discovery, characterization, and optimization
of binary alloys, establishing itself as a cornerstone of modern materials science. By providing a virtual
laboratory, atomistic and quantum-level modeling techniques allow unprecedented access to the
intricate structure property relationships that govern material behavior across compositional, phase, and
microstructural dimensions. These methodologies enable researchers to probe phenomena that are often
inaccessible or challenging to measure experimentally, including defect energetics, atomic diffusion
pathways, phase stability under extreme conditions, and nanoscale mechanical responses. Beyond
offering predictive insights, simulation significantly reduces the dependence on labor-intensive trial and
error experimental workflows, thereby compressing the traditional materials design cycle from years or
decades to mere months. This acceleration is particularly valuable for the development of application-
specific alloys, where targeted optimization of electronic, thermal, mechanical, or magnetic properties is
critical. For instance, simulations can guide the selection of alloying elements to enhance corrosion
resistance in biomedical implants, improve high-temperature stability in aerospace components, or tailor
band structures in semiconductor alloys [30]. Moreover, the integration of simulation with high
throughput computational screening, machine learning, and multiscale modeling has expanded the
accessible design space for binary alloys, enabling systematic exploration of previously intractable
compositional and structural combinations. As a result, simulation-driven alloy discovery is transitioning
from a supplementary tool to a directive framework, providing not only mechanistic understanding but
also actionable guidance for rational materials engineering and next generation technology development.
To ensure reliability, the process of alloy discovery by simulation always requires cross-validation with
experimental data. Studies have demonstrated that predictions from atomistic simulations can
successfully reproduce observed macroscopic quantities: Mechanical predictions: MD simulations of
shock compression of Ni-Al and Cu-Zr alloys successfully reproduced the experimentally observed
Hugoniot curve. Electronic structure predictions: DFT and GW calculations of Si-Ge alloys predicted
reduced band gap and carrier mobility, which were confirmed in epitaxial thin films.

3.1. Mechanical properties.

MD simulations have provided profound insights into the atomic-scale mechanisms governing plastic
deformation, dislocation nucleation and motion, twinning, and grain boundary evolution in binary alloys
[31]. By resolving the temporal and spatial evolution of atoms under applied stress or thermal
fluctuations, MD enables the direct observation of phenomena that are challenging to capture
experimentally, offering mechanistic understanding essential for materials design. For instance, in Ti-Nb
and Cu-Zn alloy systems, solute atoms have been shown to significantly influence stacking fault energies
and slip behavior, thereby modulating ductility, deformation modes, and work-hardening characteristics
[32, 33]. Specifically, in Ti-Nb alloys widely utilized in orthopedic implants combined MD and DFT

studies demonstrate that Nb additions suppress o’ -martensitic transformations while stabilizing the (3-
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phase, allowing precise tuning of the elastic modulus and facilitating transformation-induced plasticity
(TRIP) effects that enhance mechanical performance under physiological loading [34]. Recent advances
integrating machine learning with MD simulations have further expanded the scope of alloy design. ML
augmented MD frameworks enable high-throughput compositional screening, identifying binary alloys
with optimized mechanical properties. Notably, studies on Al-Mg and Fe-Ni systems have revealed
compositions exhibiting enhanced toughness, grain-boundary strengthening, and high-strength
characteristics, features particularly relevant for demanding aerospace and structural applications [35,
36]. These developments underscore the growing role of MD, not only as a tool for mechanistic
exploration but also as a predictive platform for rational alloy engineering.

3.2. Thermal properties.

Thermal transport in binary alloys is largely governed by phonon scattering arising from mass disorder,
bond inhomogeneity, and lattice imperfections. First-principles approaches, particularly DFT combined
with phonon dispersion calculations and Boltzmann Transport Equation (BTE) solvers, have been
successfully applied to systems such as Si-Ge and Al-Mg alloys, providing quantitative predictions of
reduced phonon mean free paths and suppressed lattice thermal conductivity [37, 38]. These calculations
elucidate the fundamental mechanisms by which compositional complexity and interatomic bonding
variations impede heat flow, enabling the rational design of alloys for thermoelectric or heat-
management applications. MD simulations offer a complementary perspective by inherently capturing
anharmonic effects, temperature-dependent scattering processes, and interfacial thermal resistance.
Recent MD studies on Fe-Ni alloys have demonstrated that short-range order (SRO) and local atomic
arrangements can substantially modify phonon lifetimes, enhancing thermal stability and mechanical
resilience at elevated temperatures [39]. By combining DFT-BTE predictions with atomistic MD insights,
researchers can achieve a multiscale understanding of thermal transport, bridging the gap between
fundamental lattice dynamics and macroscopic thermal behavior. Such integrative modeling frameworks
are increasingly critical for designing binary alloys in high temperature, energy, and electronic
applications, where precise control over heat conduction is essential for performance and reliability.

3.3. Electronic properties.

DFT has become a cornerstone in the investigation of electronic band structures in semiconducting
binary alloys. In systems such as Si-Ge and Bi-Sb, first-principles simulations have demonstrated that
both band gap energies and carrier mobilities can be systematically tuned through compositional
variation, atomic ordering, and applied strain, providing critical guidance for the design of high-
performance electronic devices [40, 41]. Layered transition metal dichalcogenide alloys, such as MoS»-
WS,, further illustrate the sensitivity of electronic properties to structural configuration. In these
materials, the stacking sequence and alloy composition dictate the band gap, which spans a range from
approximately 1.2 to 1.9 eV, directly influencing their suitability for optoelectronic, photonic, and
valleytronic applications [42]. Beyond conventional DFT, advanced techniques such as the GW
approximation and time dependent DFT (TD-DFT) have been employed to capture excitonic effects and
interband transitions, enabling more accurate predictions of light absorption, photoluminescence, and
optical response spectra [43]. Complementing these quantum mechanical approaches, machine learning
(ML) models trained on extensive DFT datasets have facilitated high throughput screening and
accelerated exploration of previously uncharted compositional spaces, thereby identifying promising

candidate semiconductors with targeted electronic properties [44].
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3.4. Energy-related applications.

Binary alloys have emerged as highly promising candidates for energy storage and conversion
applications, owing to their tunable composition dependent properties and structural versatility. First
principles studies indicate that AlI-Mg alloys possess favorable hydride formation enthalpies, making
them attractive as lightweight hydrogen storage media with high gravimetric and volumetric capacities
[45]. In Fe-Ni systems, computational investigations have demonstrated that optimizing the nickel
content can enhance corrosion resistance, catalytic performance, and structural stability, rendering these
alloys particularly suitable for solid oxide fuel cell (SOFC) components [46]. In the context of lithium-ion
batteries, Si-Sn and Sn-Sb alloys have been extensively studied using combined Molecular Dynamics
(MD) and DFT approaches. These simulations reveal that alloy composition critically influences lithium-
ion diffusion pathways, volumetric expansion during lithiation, and overall cycling stability, providing
mechanistic insights that inform the design of next-generation anode materials [47]. Moreover, the
integration of artificial intelligence (Al) with high-throughput DFT screening has facilitated the discovery
of novel binary alloy catalysts for electrochemical CO; reduction and ammonia synthesis. By rapidly
evaluating vast compositional spaces and predicting key catalytic descriptors, these Al-assisted
strategies exemplify the synergistic potential of combining atomistic modeling and machine learning to
accelerate the development of sustainable energy materials [48]. Collectively, these studies underscore
the central role of computationally guided alloy design in addressing critical challenges in energy storage,

conversion, and sustainable technology development.
4. Case studies simulation in action.

Computational simulation exemplifies the translational potential of modern materials modeling, bridging
the gap between theoretical predictions and experimental realization, as well as facilitating subsequent
industrial integration. Representative studies across diverse alloy systems demonstrate how atomistic
and quantum-level simulations can directly inform materials design: guiding the development of
semiconducting alloys with tailored electronic properties, optimizing biomedical alloys for mechanical
performance and biocompatibility, engineering structural alloys with enhanced strength and ductility,
and enabling nanoscale design in advanced electronic and optoelectronic devices. These examples
collectively underscore the capacity of computational approaches to accelerate the discovery to
application pipeline, transforming abstract modeling insights into tangible technological advancements.
4.1. High-performance semiconductor materials (Si-Ge).

The Si-Ge binary alloy system serves as a canonical example of how computational simulations can
directly influence the development and optimization of semiconductor technologies. SiGe alloys play a
pivotal role in complementary metal oxide semiconductor (CMOS) transistors, infrared detectors, and
thermoelectric devices, owing to their tunable band gaps and enhanced carrier mobility relative to pure
silicon [40]. First principles DFT calculations, complemented by GW corrections, have systematically
mapped the correlation between germanium concentration and electronic band structure, revealing a
band gap reduction from 1.12 eV in pure Si to approximately 0.66 eV in pure Ge [49]. Strain-engineering
simulations have further elucidated the modulation of band curvature and mobility anisotropy,
predictions that have been experimentally validated in epitaxial thin films [50]. MD studies provide
atomistic insights into defect formation, interdiffusion, and thermal transport in SiGe heterostructures,
informing strategies for precise control of epitaxial growth. Coupled DFT-MD investigations have guided
the design of SiGe nanowires and superlattices, enabling the realization of experimental thermoelectric
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figure-of-merit (ZT) values exceeding 1.5 [51]. Collectively, these computational advances have
facilitated the direct translation of theoretical insights into industrial practice, exemplified by the
integration of strain-engineered Silicon Germanium (SiGe) channels in advanced Fin Field Effect
Transistor (FinFET) nodes deployed by leading semiconductor manufacturers such as Intel [52]. This
case underscores the capacity of simulation driven design to accelerate both fundamental understanding
and technological deployment in high-performance electronic materials.

4.2. Biocompatible biomedical materials (Ti-Nb).

The Ti-Nb binary alloy system has emerged as a leading candidate for orthopedic implant applications
due to its exceptional biocompatibility, corrosion resistance, and highly tunable elastic modulus. DFT
investigations have demonstrated that Nb additions effectively stabilize the 3-phase of titanium, reducing
the elastic modulus from approximately 110 GPa in pure Ti to 40-60 GPa, closely matching the
mechanical properties of cortical bone and minimizing stress shielding effects [32]. MD simulations
provide mechanistic insight into the role of Nb in governing dislocation motion, twin boundary
formation, and defect mediated plasticity, elucidating the origins of enhanced fatigue resistance under
cyclic loading conditions [53]. Surface level ab initio molecular dynamics (AIMD) calculations further
reveal favorable adsorption energetics for hydroxyapatite, supporting osteointegration and highlighting
the potential for improved bone implant interface performance [54]. Recent advances in multiscale
modeling have integrated atomistic simulations with additive manufacturing (AM) process parameters,
predicting how powder bed fusion (PBF) conditions influence porosity, microstructural evolution, and
martensitic transformation in Ti-Nb alloys. These simulations enable the rational optimization of AM
processing routes to produce implants with tailored mechanical properties and reliable in vivo
performance [55]. Collectively, these computational studies illustrate how integrated simulation
frameworks can accelerate the design, fabrication, and clinical translation of next generation biomedical
alloys.

4.3. Lightweight structural alloys (Al-Mg).

Al-Mg binary alloys occupy a central role in lightweight structural engineering due to their high specific
strength, corrosion resistance, and formability. DFT studies of Al-Mg phase diagrams have elucidated the
stability ranges of solid solutions and intermetallic compounds, such as [3-AlsMg;, providing essential
guidance for alloy design aimed at mitigating embrittlement and enhancing mechanical reliability [56].
MD simulations have offered atomistic insights into the influence of magnesium on dislocation density,
grain boundary cohesion, and impact resistance, revealing mechanisms of mechanical strengthening and
energy absorption at the nanoscale [57]. Coupled with simulation-informed precipitation studies, these
approaches have enabled the optimization of heat treatment schedules, which have been experimentally
validated in Al-Mg-Si alloy systems to achieve controlled microstructures and enhanced mechanical
performance [38]. At larger scales, finite element models parameterized using MD-derived constitutive
data allow accurate prediction of crash and impact behavior in Al-Mg sheet components, substantially
reducing reliance on costly experimental testing [58]. Recent developments integrating machine learning
(ML) with DFT datasets have further accelerated high-throughput screening of Al-Mg compositions,
enabling the identification of alloys with superior resistance to corrosion and hydrogen embrittlement, a
key consideration for lightweight and safe electric vehicle housings [59]. Collectively, these
computational strategies demonstrate the multiscale potential of simulation-driven alloy design, bridging

atomic insights to structural performance and industrial implementation.
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4.4. 2D binary alloys for nanoelectronics (MoS,-WS,, graphene-hBN).

Two-dimensional (2D) binary alloys represent a frontier in computational materials design, with
significant implications for nanoelectronics, optoelectronics, and flexible device technologies. DFT
calculations indicate that MoS;-WS: alloys maintain direct band gaps tunable between 1.5 and 1.9 eV,
rendering them highly suitable for applications in optoelectronic devices, photodetectors, and
valleytronic architectures [42]. Monte Carlo simulations combined with cluster expansion techniques
have revealed the thermodynamic stability of short-range ordering and domain size distributions, which
are critical parameters for controlling growth quality during chemical vapor deposition (CVD) synthesis
[60]. Similarly, graphene-hBN hybrid alloys (CBN materials) exhibit compositionally tunable electronic
band gaps spanning 0-5.5 eV, as predicted by hybrid DFT studies, providing design flexibility for
semiconducting and insulating components in nanoscale electronics [61]. MD simulations complement
these insights by evaluating thermal transport, mechanical response, and structural stability under
applied strain, essential for the reliable integration of these 2D alloys into flexible and stretchable
electronic devices [62]. Recent advances in predictive modeling of nucleation energetics and interlayer
interactions have further guided the experimental realization of van der Waals heterostructures,
demonstrating how computational design can bridge fundamental theory with practical fabrication and
device implementation [63]. Collectively, these studies underscore the transformative role of simulation

in advancing 2D binary alloys from theoretical prediction to technological deployment.
5. Challenges and future prospects.

Despite significant progress in simulation-driven alloy discovery, several critical challenges remain that
limit the full scale deployment and integration of computational predictions into experimental and
industrial workflows. These challenges stem from both methodological limitations and gaps in
computational and experimental infrastructure, necessitating coordinated efforts across the materials
modeling, data science, and experimental communities. The challenging problem of simulation method
not only exists in the potential force field but also exists in the implementation method, model size and
many other limitations that have not been thoroughly resolved.
5.1. Persistent challenges.
(i) Force field accuracy in MD: The predictive reliability of MD simulations critically depends on the
accuracy of the underlying interatomic potentials. Classical empirical force fields, such as Embedded
Atom Method (EAM) or Modified Embedded Atom Method (MEAM), offer computational efficiency but
often fail to capture complex bonding environments accurately, particularly in alloys exhibiting charge
transfer, magnetic interactions, or pronounced anharmonic effects. Consequently, predictions of defect
energetics, surface diffusion, or phase transformations in systems with mixed bonding character such as
Al-Mg and Fe-Ni alloys remain limited when relying solely on classical potentials [64, 65]. Recent
developments in machine-learned potentials, including Moment Tensor Potentials (MTP) and Neural
Network Potentials (NNP), show promise in bridging this gap, but widespread adoption and validation
across diverse binary alloys remain ongoing challenges.
(i) Computational scaling of DFT: While DFT provides high fidelity predictions of electronic structure,
energetics, and thermodynamic properties, its computational cost scales steeply with system size and
electron count, typically as ~O(N?). This restricts practical DFT applications to relatively small unit cells
and low defect concentrations. Although linear-scaling methods, GPU acceleration, and high throughput
frameworks have extended the feasible problem size, large scale simulations involving long-timescale
-9-
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dynamics, high temperature phase evolution, or multicomponent systems remain computationally
prohibitive for many binary alloys [17, 66].

(iii) Limited integration between simulations and experiments: Despite the sophistication of
computational methods, their full potential is often unrealized due to insufficient integration with
experimental workflows. Disparities in data formats, lack of standardized metadata, and the absence of
real-time feedback loops impede validation, iterative refinement, and the translation of predictions into
practical alloy design. Furthermore, simulations frequently assume idealized conditions perfect crystals
at 0 K whereas real world materials contain grain boundaries, impurities, and coupled multi physics
interactions. Closing this gap is essential for enabling predictive, experiment informed simulation
pipelines capable of guiding the design, fabrication, and deployment of advanced binary alloys [15, 67].
The biggest challenge for ML is the quality, variety, and coverage of the dataset. Most large data
repositories such as the Materials Project or NOMAD are based primarily on ground-state (0 K) DFT
calculations, which creates a large data gap for properties at nonequilibrium, high temperatures, or
realistic processing conditions (e.g., cooling rates, thermal gradients). This makes the transferability of
ML models to real-world processing environments difficult.

5.2. Emerging solutions and opportunities.

5.2.1. Machine learning-driven force fields.

Machine learning interatomic potentials (MLIPs), including the Gaussian Approximation Potential (GAP),
Spectral Neighbor Analysis Potential (SNAP), and Moment Tensor Potential (MTP), constitute a
transformative advance in MD simulations. By training on extensive DFT datasets, these potentials
achieve near quantum mechanical accuracy while maintaining the computational efficiency of classical
MD. MLIPs have been successfully employed to model complex phenomena such as dislocation
nucleation and motion, crack initiation and propagation, and phase transitions in binary alloys, providing
unprecedented predictive fidelity across diverse compositional and structural spaces [68-70].
Furthermore, active learning frameworks have been developed to iteratively refine MLIPs on the fly
during simulations, allowing the potential to adapt dynamically to evolving atomic environments. This
capability is particularly critical for simulating non-equilibrium processes, defect formation, and
surface/interface dynamics in alloys, where traditional fixed-form potentials often fail. The combination
of MLIPs with high throughput simulations and multiscale modeling thus offers a powerful platform for
the predictive design of advanced binary alloys with tailored mechanical, thermal, and electronic
properties. Although MLIPs (e.g., MTP, GAP) achieve near DFT accuracy, generating high-quality training
datasets remains a costly and highly skilled process, especially in the large structural and compositional
spaces of binary alloys. Furthermore, the extrapolation capability of MLIPs beyond the training data
space remains an ongoing research issue.

5.2.2. Digital twins of material lifecycles.

The concept of digital twins virtual, high fidelity replicas that represent the entire lifecycle of materials
from synthesis through service induced degradation is rapidly gaining traction in the field of alloy
research. These platforms integrate multi-scale computational simulations, including DFT, MD, and Finite
Element Methods (FEM), with experimental feedback derived from in situ characterization techniques
such as electron microscopy, X-ray diffraction, and spectroscopy. By combining operational data streams
from sensors and performance monitoring, digital twins provide a dynamic, continuously updated

representation of material behavior under realistic conditions. In the context of binary alloys, digital
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twins offer the capability to track microstructural evolution, grain growth, phase transformations, defect
nucleation, and accumulation over time, enabling predictive modeling of mechanical, thermal, and
chemical performance. Such models facilitate anticipatory maintenance, lifetime prediction, and real time
optimization of components in demanding service environments, including aerospace engines, energy
systems, and biomedical implants [71, 72]. By bridging atomistic simulations, mesoscale modeling, and
experimental validation within a unified framework, digital twins represent a transformative paradigm
for materials design, process control, and reliability assurance, accelerating the translation of
computational insights into industrially deployable alloy solutions. Implementing a Digital Twin is not
only challenging in terms of simulation but also in terms of data infrastructure and system integration. It
requires continuous, real-time integration between multi-scale models (DFT, MD, FEM), experimental
sensor data (in situ characterization), and industrial operational systems. Challenges of data
compatibility, metadata standardization, and building automated feedback loops are the biggest barriers
to implementing a Digital Twin in a real world production environment.

5.2.3. Quantum computing for electronic structure.

Classical DFT approaches, while highly effective for many materials, are fundamentally constrained when
addressing systems with strongly correlated electrons or large-scale quantum phenomena. These
limitations hinder accurate modeling of electronic structure, magnetism, and excitonic effects in complex
binary alloys. Quantum computing, leveraging algorithms such as quantum phase estimation and
variational quantum eigensolvers (VQE), presents a promising pathway to surmount these challenges by
enabling direct solutions of the electronic Schrodinger equation on quantum hardware. Although
currently in its early developmental stages, quantum algorithms have already demonstrated successful
simulations of small molecules and simplified Hubbard models, establishing proof-of-concept for future
applications in materials science [73, 74]. Looking forward, quantum simulation holds the potential to
revolutionize the prediction of electronic properties in complex binary systems, including band
structures, magnetic ordering, and excitonic behavior in alloys such as Fe-Ni, MoS;-WS;,, and other
technologically relevant compounds. By enabling quantum-level accuracy for systems that are intractable
with classical methods, quantum-enabled computational frameworks could unlock fundamentally new
insights into alloy behavior, guiding the design of high performance materials for electronics, energy, and
spintronic applications. The integration of quantum simulation with classical multiscale modeling and
machine learning represents a forward looking strategy to expand the predictive reach of computational
alloy design. Then they have to face the challenges of Quantum Computing because this field is still in the
early developmental stages. Current algorithms can only successfully simulate small molecules or simple
Hubbard models. Technical barriers such as high error rates of qubits, decoherence, and scalability issues
for complex material systems (e.g., a large alloy crystal) are major challenges that will take decades to
solve

5.3. Toward autonomous materials design.

The convergence of artificial intelligence (AI) enhanced modeling, real-time experimental integration,
and emerging quantum computing technologies is ushering in a transformative era of autonomous
materials design. Within this paradigm, computational simulations evolve from passive predictive tools
into active agents embedded in closed loop design systems, capable of generating hypotheses, guiding
synthesis, validating experimental outcomes, and dynamically adapting to feedback. For binary alloys,

such autonomous frameworks envision the rapid identification of compositions with tailored mechanical,
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electronic, thermal, or biocompatible properties; predictive modeling of microstructural evolution under
realistic service conditions; and real-time optimization of processing parameters, all with minimal
human intervention. Initiatives such as the Materials Genome Initiative (MGI), AFLOW, and NOMAD
provide the essential computational infrastructure, high fidelity datasets, and standardized descriptors
required for training and deploying these intelligent design agents. Realizing this vision will necessitate
close interdisciplinary collaboration among materials scientists, computational physicists, data
engineers, and manufacturing specialists, fostering integration across simulation, characterization, and
fabrication domains [75]. By combining Al, multiscale modeling, quantum-enabled simulations, and
digital twin frameworks, the materials community can accelerate the discovery to deployment cycle for
binary alloys, enabling a new generation of high performance, application specific materials and
establishing a paradigm shift in how alloys are designed, optimized, and industrially implemented.
Currently, many studies have linked the results of experimental methods with the results of simulation
methods to compare, contrast and confirm each other's results and predictions, creating a rich database
for comparison and sharing with the world community. In that, with the proposed recommendations:
-ML Experiment Integration: Develop closed-loop feedback systems where ML enhanced predictions are
sent to automated synthesis and characterization systems (e.g., Robotic Labs) for validation and
collection of new experimental data. This data is then used to refine the ML model, forming an
autonomous materials design cycle.
-Develop Open Access Alloy Databases: Invest in building standardized repositories (using unified
metadata) that contain not only DFT data but also multi-condition experimental data (elevated
temperature properties, mechanical properties under load, heat treatment data, etc.). Initiatives such as
AFLOWLIB and NOMAD need to be expanded to integrate experimental and simulation data from
different scales (DFT, MD, FEM).
-Multiscale Modeling Enhancement: Priority is given to the development of hybrid approaches and
multiscale modeling software that can automatically link accurate predictions from DFT (quantum level)
with large-scale dynamics of MD and continuum level modeling (Phase Field, FEM), to solve complex
microstructure and large deformation problems under realistic conditions (e.g., simulation of casting or
3D printing processes).
-MLIP Validation and Expansion: Research focuses on validating the transferability and extrapolation of
Machine Learning Force Fields (MLIPs) for novel binary alloy systems and non-equilibrium conditions.
6. Conclusion.
The convergence of computational simulation and materials science has catalyzed a transformative
paradigm in the discovery, design, and optimization of binary alloys. Modern simulations now provide
atomistic and quantum level insights, elucidating mechanisms such as dislocation nucleation, grain-
boundary evolution, and phase stability, while simultaneously enabling predictive modeling of thermal,
electronic, and mechanical properties. The case studies examined from Si-Ge semiconductors and MoS;-
WS, 2D alloys to Ti-Nb biomedical and Al-Mg structural systems illustrate how theoretical predictions
increasingly align with experimental validation, high-throughput synthesis, and industrial deployment.
Despite these advances, several challenges persist. Force field limitations constrain the accuracy of
molecular dynamics simulations, the computational cost of DFT and large-scale modeling restricts
system size and timescales, and gaps remain in integrating multi-fidelity simulation data with real-world
experimental workflows. Emerging strategies including machine learned interatomic potentials, digital
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twin platforms, and quantum computing offer robust pathways to overcome these bottlenecks, enabling
high-fidelity, scalable, and adaptive simulation frameworks that closely mirror physical reality. Looking
forward, the future of binary alloy research lies in closed-loop, simulation-informed ecosystems capable
of autonomously guiding synthesis, characterization, and deployment. By unifying Al enhanced modeling,
multiscale simulation, and real-time experimental feedback within a coherent data centric framework,
the materials community can accelerate innovation cycles, reduce development costs, and engineer
alloys with unprecedented functional performance. The frontier is no longer defined by computational
limitations; rather, it is shaped by the ability to integrate and orchestrate diverse predictive tools into a

synergistic platform for next-generation materials discovery.
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