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1. Introduction. 
The discovery and rational design of advanced functional materials constitute a cornerstone of 

technological innovation in the twenty first century. Among these, binary alloys comprising two 
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modern materials science. 
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constituent elements represent one of the most fundamental yet versatile material classes, owing to their 

tunable structural, electronic, and thermal properties. Their technological significance spans a broad 

range of applications, including aerospace engineering, semiconductor devices, energy storage, 

heterogeneous catalysis, and biomedical systems [1]. Historically, alloy development has been dominated 

by labor-intensive experimental methodologies based on iterative synthesis and characterization. While 

effective, such trial and error approaches demand extensive time and resources and are increasingly 

misaligned with the accelerating demand for materials tailored to next-generation technologies such as 

renewable energy platforms, quantum devices, and precision medicine [2]. In response, computational 

simulation has emerged as a paradigm-shifting framework for materials discovery. Enabled by advances 

in high performance computing (HPC), graphics processing unit (GPU) acceleration, and artificial 

intelligence (AI), simulations are now capable of probing atomistic interactions and predicting emergent 

macroscopic behaviors prior to experimental realization [3]. Central to these developments are 

quantum-mechanical methods such as density functional theory (DFT), which achieve an effective 

balance between predictive accuracy and computational tractability [4]. Complementarily, molecular 

dynamics (MD) simulations provide a dynamic perspective, enabling the exploration of temperature-

dependent and time evolving phenomena in complex alloy systems [5]. Recent simulation-based studies 

have further substantiated these advantages, demonstrating how molecular dynamics and first-

principles approaches can elucidate crystallization mechanisms, phase transitions, and electronic 

properties in representative binary systems such as Au–Cu, Ag–Au, Ni–Au, and W–Si alloys [6–11]. These 

investigations confirm the predictive capability of atomistic simulations in capturing microstructural 

evolution and thermodynamic behavior, thereby bridging the gap between theoretical modeling and 

experimental observation. The integration of data-driven methodologies has further amplified these 

capabilities. Machine learning (ML) and deep learning (DL) algorithms, when coupled with high-

dimensional materials descriptors and advanced feature-selection techniques, have demonstrated the 

capacity to uncover latent structure property relationships beyond the reach of conventional analysis. 

Notably, supervised learning models such as random forests, support vector machines, and neural 

networks have been successfully applied to predict phase stability, mechanical resilience, and thermal 

transport properties in binary and multicomponent alloy systems [12–14]. Large-scale initiatives in 

materials informatics have provided the essential data infrastructure for these advances. Resources such 

as the Materials Genome Initiative (MGI), the Novel Materials Discovery (NOMAD) repository, the Open 

Knowledgebase of Interatomic Models (OpenKIM), and Automatic Flow for Materials Discovery Library 

(AFLOWLIB) offer extensive datasets encompassing DFT-calculated properties, crystallographic 

structures, elastic constants, and more [15–18]. These repositories, coupled with high-throughput 

computational frameworks such as AFLOW and the Materials Project, have dramatically expanded the 

accessible design space for binary alloys, facilitating inverse design strategies and rapid screening of 

candidate materials [16, 17]. Nevertheless, significant challenges persist. Real-world binary alloys exhibit 

complexities compositional disorder, interfacial phenomena, kinetic constraints that are not fully 

captured by idealized computational models. Furthermore, ensuring the transferability of ML models 

trained on curated datasets to realistic processing environments remains an open problem [19]. To 

address these limitations, the integration of first-principles modeling with machine learning, multiscale 

simulation, and uncertainty quantification is increasingly recognized as essential for achieving robust 

and generalizable predictions [20]. Taken together, the accelerated discovery of binary alloys through 
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the synergy of computational simulation, AI, and informatics heralds a transformative shift in materials 

science. By compressing design cycles from decades to mere months or even weeks this paradigm offers 

unprecedented opportunities for meeting urgent global challenges, including energy sustainability, 

decarbonization, and the development of next-generation electronic and biomedical technologies [21]. 

The following sections examine the computational methodologies, data infrastructures, machine learning 

frameworks, and application domains that underpin this emerging approach to alloy discovery. The 

content of this article focuses on focus on research and point out the role of simulation in the research 

process, synthesizing binary alloys to show that in addition to experimental methods, theoretical 

methods, simulation methods play a very important role in the research process. With outstanding 

advantages such as quick survey, giving quite accurate results, creating a solid foundation for future 

experimental processes. With the MD method used when researching the structure, phase transition 

process of materials with large atomic numbers in the temperature region greater than room 

temperature (a harsh region that experiments cannot reach), fast research while the DFT method 

researches with materials with quantum structures of only a few dozen atoms, 0K temperature region, 

slow research requires a server with a quantum computer configuration. 

2. Fundamentals of computational simulation methods. 
Computational methodologies have become integral to contemporary materials science, playing a pivotal 

role in the accelerated discovery and design of binary alloys. These approaches provide unparalleled 

insights into atomic-scale interactions, phase evolution, and electronic structure, offering predictive 

capabilities that complement and often surpass traditional experimental techniques. Central to this 

computational toolkit are MD, DFT, and hybrid strategies that integrate multiscale modeling with 

machine learning. This section presents an overview of their theoretical foundations, current 

methodological advances, and key applications in the study and engineering of binary alloy systems. 

2.1. Molecular dynamics. 
Molecular dynamics (MD) provides a computational framework for simulating the temporal evolution of 

atomic systems through numerical integration of Newton’s equations of motion, offering detailed insights 

into material behavior over nanosecond to microsecond timescales [22]. This methodology relies on 

predefined interatomic potentials, such as Embedded Atom Method (EAM), Modified Embedded Atom 

Method (MEAM), and Tersoff potentials, and is particularly effective for capturing thermally activated 

phenomena, including diffusion, grain boundary migration, dislocation dynamics, phase transformations, 

and mechanical deformation in binary alloys [23]. Recent advances in GPU-accelerated MD packages, 

including Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), GROningen MAchine 

for Chemical Simulations (GROMACS), and Open Molecular Mechanics (OpenMM), have dramatically 

expanded the accessible simulation scale, enabling the study of systems containing millions of atoms 

within computationally feasible times [24]. These developments have facilitated large-scale 

investigations of polycrystalline binary alloys, allowing accurate predictions of melting behavior, grain 

boundary sliding, and crack propagation under applied mechanical loads [25]. Between 2022 and 2024, 

multiple studies highlighted the capability of MD to model alloy responses under extreme conditions. 

Shock compression simulations of Ni–Al and Cu–Zr alloys successfully reproduced experimentally 

observed Hugoniot curves, while ultrafast laser heating studies elucidated nanoscale thermal transport 

mechanisms relevant to additive manufacturing [26, 27]. Furthermore, the emergence of machine-

learned force fields, including Moment Tensor Potentials (MTP) and Neural Network Potentials, has 
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significantly enhanced the predictive accuracy of MD simulations, approaching the fidelity of first 

principles calculations [25]. 

2.2. Density functional theory. 
Density Functional Theory (DFT) is a quantum-mechanical framework that treats the electron density as 

the central variable, providing an approximate solution to the many-body Schrödinger equation via the 

Kohn–Sham formalism [28]. DFT is highly effective in predicting ground-state properties of crystalline 

systems, including lattice parameters, cohesive energies, bulk moduli, electronic band structures, 

magnetic ordering, and vibrational spectra [29]. In the study of binary alloys, DFT has become 

indispensable for calculating formation enthalpies, electronic density of states (DOS), phase diagrams, 

and elastic constants, offering critical insights into phase stability, solute interactions, and miscibility 

gaps parameters essential for rational alloy design [23]. Beyond equilibrium structures, DFT enables the 

exploration of metastable or high-pressure phases that are often inaccessible to experimental 

characterization [22]. Recent methodological advancements, including hybrid functionals (e.g., Heyd–

Scuseria–Ernzerhof 2006 (HSE06)), Green’s function and screened Coulomb interaction (GW) 

corrections, and Time-Dependent Density Functional Theory (TD-DFT), have expanded the predictive 

scope to electronic band gaps and optical properties, facilitating the study of semiconductor and 

optoelectronic alloys such as Si–Ge, In–Ga, and Sn–Se systems [24, 27]. Spin-polarized DFT calculations 

have further enabled the investigation of magnetic binary alloys (e.g., Fe–Pt, Co–Ni), supporting the 

design of materials for data storage and spintronic applications [29]. 

2.3. Hybrid approaches. 
Despite the considerable capabilities of individual computational approaches, each method exhibits 

intrinsic limitations: MD lacks quantum-level accuracy, whereas DFT becomes computationally 

prohibitive for large or complex systems. To overcome these constraints, hybrid strategies that 

synergistically integrate complementary methodologies have gained prominence in alloy modeling. A 

widely employed approach is DFT-informed MD, wherein interatomic potentials for MD simulations are 

parameterized using DFT-derived data, thereby ensuring fidelity in bonding behavior, defect energetics, 

and thermodynamic predictions [25]. Machine learning (ML) potentials trained on high-fidelity DFT or 

MD datasets such as MTP and Gaussian Approximation Potentials (GAP) offer a compelling compromise 

between predictive accuracy and computational efficiency [25, 26]. Multiscale modeling frameworks 

further extend this integration by coupling atomistic simulations with continuum level methods, 

including phase-field modeling and finite element analysis, enabling the bridging of temporal and spatial 

scales essential for simulating alloy solidification, coarsening, and microstructural deformation [1]. 

Recent AI-enhanced strategies leverage high-throughput DFT or MD data within ML pipelines to rapidly 

explore extensive compositional spaces. Convolutional neural networks (CNNs) and graph based 

architectures, such as Crystal Graph Convolutional Networks (CGCNN), have been successfully applied to 

predict formation energies, mechanical hardness, and corrosion resistance across vast binary alloy 

systems [23]. As materials science increasingly embraces inverse design and autonomous discovery 

paradigms, these hybrid methodologies are poised to drive next generation alloy development. By 

combining the quantitative rigor of quantum mechanics, the scalability of classical simulations, and the 

pattern recognition power of AI, they enable accurate, efficient, and previously unattainable exploration 

of complex alloy design spaces [27]. However, each method presents its own challenges. With the 

experimental method, the biggest challenge is that the material size must be larger than 2nm or the 
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research temperature must be below 4000 K because the measuring equipment used for research cannot 

access it. With the simulation method, it is impossible to access too large a number of atoms. Too large a 

number of atoms will greatly affect the processing speed of the server. This is the biggest limitation of the 

simulation method, increasing the calculation time. To solve these problems, each method will choose the 

conditions to optimize the research process. The results are determined by approximate methods to 

determine the results to ensure that the results are close to the experiment. 

3. Simulation driven discovery and optimization of binary alloys. 
Computational simulation has fundamentally reshaped the discovery, characterization, and optimization 

of binary alloys, establishing itself as a cornerstone of modern materials science. By providing a virtual 

laboratory, atomistic and quantum-level modeling techniques allow unprecedented access to the 

intricate structure property relationships that govern material behavior across compositional, phase, and 

microstructural dimensions. These methodologies enable researchers to probe phenomena that are often 

inaccessible or challenging to measure experimentally, including defect energetics, atomic diffusion 

pathways, phase stability under extreme conditions, and nanoscale mechanical responses. Beyond 

offering predictive insights, simulation significantly reduces the dependence on labor-intensive trial and 

error experimental workflows, thereby compressing the traditional materials design cycle from years or 

decades to mere months. This acceleration is particularly valuable for the development of application-

specific alloys, where targeted optimization of electronic, thermal, mechanical, or magnetic properties is 

critical. For instance, simulations can guide the selection of alloying elements to enhance corrosion 

resistance in biomedical implants, improve high-temperature stability in aerospace components, or tailor 

band structures in semiconductor alloys [30]. Moreover, the integration of simulation with high 

throughput computational screening, machine learning, and multiscale modeling has expanded the 

accessible design space for binary alloys, enabling systematic exploration of previously intractable 

compositional and structural combinations. As a result, simulation-driven alloy discovery is transitioning 

from a supplementary tool to a directive framework, providing not only mechanistic understanding but 

also actionable guidance for rational materials engineering and next generation technology development. 

To ensure reliability, the process of alloy discovery by simulation always requires cross-validation with 

experimental data. Studies have demonstrated that predictions from atomistic simulations can 

successfully reproduce observed macroscopic quantities: Mechanical predictions: MD simulations of 

shock compression of Ni–Al and Cu–Zr alloys successfully reproduced the experimentally observed 

Hugoniot curve. Electronic structure predictions: DFT and GW calculations of Si–Ge alloys predicted 

reduced band gap and carrier mobility, which were confirmed in epitaxial thin films. 

3.1. Mechanical properties. 
MD simulations have provided profound insights into the atomic-scale mechanisms governing plastic 

deformation, dislocation nucleation and motion, twinning, and grain boundary evolution in binary alloys 

[31]. By resolving the temporal and spatial evolution of atoms under applied stress or thermal 

fluctuations, MD enables the direct observation of phenomena that are challenging to capture 

experimentally, offering mechanistic understanding essential for materials design. For instance, in Ti–Nb 

and Cu–Zn alloy systems, solute atoms have been shown to significantly influence stacking fault energies 

and slip behavior, thereby modulating ductility, deformation modes, and work-hardening characteristics 

[32, 33]. Specifically, in Ti–Nb alloys widely utilized in orthopedic implants combined MD and DFT 

studies demonstrate that Nb additions suppress α’ -martensitic transformations while stabilizing the β-
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phase, allowing precise tuning of the elastic modulus and facilitating transformation-induced plasticity 

(TRIP) effects that enhance mechanical performance under physiological loading [34]. Recent advances 

integrating machine learning with MD simulations have further expanded the scope of alloy design. ML 

augmented MD frameworks enable high-throughput compositional screening, identifying binary alloys 

with optimized mechanical properties. Notably, studies on Al–Mg and Fe–Ni systems have revealed 

compositions exhibiting enhanced toughness, grain-boundary strengthening, and high-strength 

characteristics, features particularly relevant for demanding aerospace and structural applications [35, 

36]. These developments underscore the growing role of MD, not only as a tool for mechanistic 

exploration but also as a predictive platform for rational alloy engineering. 

3.2. Thermal properties. 
Thermal transport in binary alloys is largely governed by phonon scattering arising from mass disorder, 

bond inhomogeneity, and lattice imperfections. First-principles approaches, particularly DFT combined 

with phonon dispersion calculations and Boltzmann Transport Equation (BTE) solvers, have been 

successfully applied to systems such as Si–Ge and Al–Mg alloys, providing quantitative predictions of 

reduced phonon mean free paths and suppressed lattice thermal conductivity [37, 38]. These calculations 

elucidate the fundamental mechanisms by which compositional complexity and interatomic bonding 

variations impede heat flow, enabling the rational design of alloys for thermoelectric or heat-

management applications. MD simulations offer a complementary perspective by inherently capturing 

anharmonic effects, temperature-dependent scattering processes, and interfacial thermal resistance. 

Recent MD studies on Fe–Ni alloys have demonstrated that short-range order (SRO) and local atomic 

arrangements can substantially modify phonon lifetimes, enhancing thermal stability and mechanical 

resilience at elevated temperatures [39]. By combining DFT–BTE predictions with atomistic MD insights, 

researchers can achieve a multiscale understanding of thermal transport, bridging the gap between 

fundamental lattice dynamics and macroscopic thermal behavior. Such integrative modeling frameworks 

are increasingly critical for designing binary alloys in high temperature, energy, and electronic 

applications, where precise control over heat conduction is essential for performance and reliability. 

3.3. Electronic properties. 
DFT has become a cornerstone in the investigation of electronic band structures in semiconducting 

binary alloys. In systems such as Si–Ge and Bi–Sb, first-principles simulations have demonstrated that 

both band gap energies and carrier mobilities can be systematically tuned through compositional 

variation, atomic ordering, and applied strain, providing critical guidance for the design of high-

performance electronic devices [40, 41]. Layered transition metal dichalcogenide alloys, such as MoS2-

WS2, further illustrate the sensitivity of electronic properties to structural configuration. In these 

materials, the stacking sequence and alloy composition dictate the band gap, which spans a range from 

approximately 1.2 to 1.9 eV, directly influencing their suitability for optoelectronic, photonic, and 

valleytronic applications [42]. Beyond conventional DFT, advanced techniques such as the GW 

approximation and time dependent DFT (TD-DFT) have been employed to capture excitonic effects and 

interband transitions, enabling more accurate predictions of light absorption, photoluminescence, and 

optical response spectra [43]. Complementing these quantum mechanical approaches, machine learning 

(ML) models trained on extensive DFT datasets have facilitated high throughput screening and 

accelerated exploration of previously uncharted compositional spaces, thereby identifying promising 

candidate semiconductors with targeted electronic properties [44].  
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3.4. Energy-related applications. 
Binary alloys have emerged as highly promising candidates for energy storage and conversion 

applications, owing to their tunable composition dependent properties and structural versatility. First 

principles studies indicate that Al–Mg alloys possess favorable hydride formation enthalpies, making 

them attractive as lightweight hydrogen storage media with high gravimetric and volumetric capacities 

[45]. In Fe–Ni systems, computational investigations have demonstrated that optimizing the nickel 

content can enhance corrosion resistance, catalytic performance, and structural stability, rendering these 

alloys particularly suitable for solid oxide fuel cell (SOFC) components [46]. In the context of lithium-ion 

batteries, Si–Sn and Sn–Sb alloys have been extensively studied using combined Molecular Dynamics 

(MD) and DFT approaches. These simulations reveal that alloy composition critically influences lithium-

ion diffusion pathways, volumetric expansion during lithiation, and overall cycling stability, providing 

mechanistic insights that inform the design of next-generation anode materials [47]. Moreover, the 

integration of artificial intelligence (AI) with high-throughput DFT screening has facilitated the discovery 

of novel binary alloy catalysts for electrochemical CO2 reduction and ammonia synthesis. By rapidly 

evaluating vast compositional spaces and predicting key catalytic descriptors, these AI-assisted 

strategies exemplify the synergistic potential of combining atomistic modeling and machine learning to 

accelerate the development of sustainable energy materials [48]. Collectively, these studies underscore 

the central role of computationally guided alloy design in addressing critical challenges in energy storage, 

conversion, and sustainable technology development. 

4. Case studies simulation in action. 
Computational simulation exemplifies the translational potential of modern materials modeling, bridging 

the gap between theoretical predictions and experimental realization, as well as facilitating subsequent 

industrial integration. Representative studies across diverse alloy systems demonstrate how atomistic 

and quantum-level simulations can directly inform materials design: guiding the development of 

semiconducting alloys with tailored electronic properties, optimizing biomedical alloys for mechanical 

performance and biocompatibility, engineering structural alloys with enhanced strength and ductility, 

and enabling nanoscale design in advanced electronic and optoelectronic devices. These examples 

collectively underscore the capacity of computational approaches to accelerate the discovery to 

application pipeline, transforming abstract modeling insights into tangible technological advancements. 

4.1. High-performance semiconductor materials (Si–Ge). 
The Si–Ge binary alloy system serves as a canonical example of how computational simulations can 

directly influence the development and optimization of semiconductor technologies. SiGe alloys play a 

pivotal role in complementary metal oxide semiconductor (CMOS) transistors, infrared detectors, and 

thermoelectric devices, owing to their tunable band gaps and enhanced carrier mobility relative to pure 

silicon [40]. First principles DFT calculations, complemented by GW corrections, have systematically 

mapped the correlation between germanium concentration and electronic band structure, revealing a 

band gap reduction from 1.12 eV in pure Si to approximately 0.66 eV in pure Ge [49]. Strain-engineering 

simulations have further elucidated the modulation of band curvature and mobility anisotropy, 

predictions that have been experimentally validated in epitaxial thin films [50].  MD studies provide 

atomistic insights into defect formation, interdiffusion, and thermal transport in SiGe heterostructures, 

informing strategies for precise control of epitaxial growth. Coupled DFT–MD investigations have guided 

the design of SiGe nanowires and superlattices, enabling the realization of experimental thermoelectric 
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figure-of-merit (ZT) values exceeding 1.5 [51]. Collectively, these computational advances have 

facilitated the direct translation of theoretical insights into industrial practice, exemplified by the 

integration of strain-engineered Silicon Germanium (SiGe) channels in advanced Fin Field Effect 

Transistor (FinFET) nodes deployed by leading semiconductor manufacturers such as Intel [52]. This 

case underscores the capacity of simulation driven design to accelerate both fundamental understanding 

and technological deployment in high-performance electronic materials. 

4.2. Biocompatible biomedical materials (Ti–Nb). 
The Ti–Nb binary alloy system has emerged as a leading candidate for orthopedic implant applications 

due to its exceptional biocompatibility, corrosion resistance, and highly tunable elastic modulus. DFT 

investigations have demonstrated that Nb additions effectively stabilize the β-phase of titanium, reducing 

the elastic modulus from approximately 110 GPa in pure Ti to 40–60 GPa, closely matching the 

mechanical properties of cortical bone and minimizing stress shielding effects [32]. MD simulations 

provide mechanistic insight into the role of Nb in governing dislocation motion, twin boundary 

formation, and defect mediated plasticity, elucidating the origins of enhanced fatigue resistance under 

cyclic loading conditions [53]. Surface level ab initio molecular dynamics (AIMD) calculations further 

reveal favorable adsorption energetics for hydroxyapatite, supporting osteointegration and highlighting 

the potential for improved bone implant interface performance [54]. Recent advances in multiscale 

modeling have integrated atomistic simulations with additive manufacturing (AM) process parameters, 

predicting how powder bed fusion (PBF) conditions influence porosity, microstructural evolution, and 

martensitic transformation in Ti–Nb alloys. These simulations enable the rational optimization of AM 

processing routes to produce implants with tailored mechanical properties and reliable in vivo 

performance [55]. Collectively, these computational studies illustrate how integrated simulation 

frameworks can accelerate the design, fabrication, and clinical translation of next generation biomedical 

alloys. 

4.3. Lightweight structural alloys (Al–Mg). 
Al–Mg binary alloys occupy a central role in lightweight structural engineering due to their high specific 

strength, corrosion resistance, and formability. DFT studies of Al–Mg phase diagrams have elucidated the 

stability ranges of solid solutions and intermetallic compounds, such as β-Al3Mg2, providing essential 

guidance for alloy design aimed at mitigating embrittlement and enhancing mechanical reliability [56]. 

MD simulations have offered atomistic insights into the influence of magnesium on dislocation density, 

grain boundary cohesion, and impact resistance, revealing mechanisms of mechanical strengthening and 

energy absorption at the nanoscale [57]. Coupled with simulation-informed precipitation studies, these 

approaches have enabled the optimization of heat treatment schedules, which have been experimentally 

validated in Al–Mg–Si alloy systems to achieve controlled microstructures and enhanced mechanical 

performance [38]. At larger scales, finite element models parameterized using MD-derived constitutive 

data allow accurate prediction of crash and impact behavior in Al–Mg sheet components, substantially 

reducing reliance on costly experimental testing [58]. Recent developments integrating machine learning 

(ML) with DFT datasets have further accelerated high-throughput screening of Al–Mg compositions, 

enabling the identification of alloys with superior resistance to corrosion and hydrogen embrittlement, a 

key consideration for lightweight and safe electric vehicle housings [59]. Collectively, these 

computational strategies demonstrate the multiscale potential of simulation-driven alloy design, bridging 

atomic insights to structural performance and industrial implementation. 
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4.4. 2D binary alloys for nanoelectronics (MoS₂–WS₂, graphene–hBN). 
Two-dimensional (2D) binary alloys represent a frontier in computational materials design, with 

significant implications for nanoelectronics, optoelectronics, and flexible device technologies. DFT 

calculations indicate that MoS2–WS2 alloys maintain direct band gaps tunable between 1.5 and 1.9 eV, 

rendering them highly suitable for applications in optoelectronic devices, photodetectors, and 

valleytronic architectures [42]. Monte Carlo simulations combined with cluster expansion techniques 

have revealed the thermodynamic stability of short-range ordering and domain size distributions, which 

are critical parameters for controlling growth quality during chemical vapor deposition (CVD) synthesis 

[60]. Similarly, graphene–hBN hybrid alloys (CBN materials) exhibit compositionally tunable electronic 

band gaps spanning 0–5.5 eV, as predicted by hybrid DFT studies, providing design flexibility for 

semiconducting and insulating components in nanoscale electronics [61]. MD simulations complement 

these insights by evaluating thermal transport, mechanical response, and structural stability under 

applied strain, essential for the reliable integration of these 2D alloys into flexible and stretchable 

electronic devices [62]. Recent advances in predictive modeling of nucleation energetics and interlayer 

interactions have further guided the experimental realization of van der Waals heterostructures, 

demonstrating how computational design can bridge fundamental theory with practical fabrication and 

device implementation [63]. Collectively, these studies underscore the transformative role of simulation 

in advancing 2D binary alloys from theoretical prediction to technological deployment. 

5. Challenges and future prospects. 
Despite significant progress in simulation-driven alloy discovery, several critical challenges remain that 

limit the full scale deployment and integration of computational predictions into experimental and 

industrial workflows. These challenges stem from both methodological limitations and gaps in 

computational and experimental infrastructure, necessitating coordinated efforts across the materials 

modeling, data science, and experimental communities. The challenging problem of simulation method 

not only exists in the potential force field but also exists in the implementation method, model size and 

many other limitations that have not been thoroughly resolved. 

5.1. Persistent challenges. 
(i) Force field accuracy in MD: The predictive reliability of MD simulations critically depends on the 

accuracy of the underlying interatomic potentials. Classical empirical force fields, such as Embedded 

Atom Method (EAM) or Modified Embedded Atom Method (MEAM), offer computational efficiency but 

often fail to capture complex bonding environments accurately, particularly in alloys exhibiting charge 

transfer, magnetic interactions, or pronounced anharmonic effects. Consequently, predictions of defect 

energetics, surface diffusion, or phase transformations in systems with mixed bonding character such as 

Al–Mg and Fe–Ni alloys remain limited when relying solely on classical potentials [64, 65]. Recent 

developments in machine-learned potentials, including Moment Tensor Potentials (MTP) and Neural 

Network Potentials (NNP), show promise in bridging this gap, but widespread adoption and validation 

across diverse binary alloys remain ongoing challenges. 

(ii) Computational scaling of DFT: While DFT provides high fidelity predictions of electronic structure, 

energetics, and thermodynamic properties, its computational cost scales steeply with system size and 

electron count, typically as ~O(N³). This restricts practical DFT applications to relatively small unit cells 

and low defect concentrations. Although linear-scaling methods, GPU acceleration, and high throughput 

frameworks have extended the feasible problem size, large scale simulations involving long-timescale 
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dynamics, high temperature phase evolution, or multicomponent systems remain computationally 

prohibitive for many binary alloys [17, 66]. 

(iii) Limited integration between simulations and experiments: Despite the sophistication of 

computational methods, their full potential is often unrealized due to insufficient integration with 

experimental workflows. Disparities in data formats, lack of standardized metadata, and the absence of 

real-time feedback loops impede validation, iterative refinement, and the translation of predictions into 

practical alloy design. Furthermore, simulations frequently assume idealized conditions perfect crystals 

at 0 K whereas real world materials contain grain boundaries, impurities, and coupled multi physics 

interactions. Closing this gap is essential for enabling predictive, experiment informed simulation 

pipelines capable of guiding the design, fabrication, and deployment of advanced binary alloys [15, 67]. 

The biggest challenge for ML is the quality, variety, and coverage of the dataset. Most large data 

repositories such as the Materials Project or NOMAD are based primarily on ground-state (0 K) DFT 

calculations, which creates a large data gap for properties at nonequilibrium, high temperatures, or 

realistic processing conditions (e.g., cooling rates, thermal gradients). This makes the transferability of 

ML models to real-world processing environments difficult.  

5.2. Emerging solutions and opportunities. 
5.2.1. Machine learning-driven force fields. 

Machine learning interatomic potentials (MLIPs), including the Gaussian Approximation Potential (GAP), 

Spectral Neighbor Analysis Potential (SNAP), and Moment Tensor Potential (MTP), constitute a 

transformative advance in MD simulations. By training on extensive DFT datasets, these potentials 

achieve near quantum mechanical accuracy while maintaining the computational efficiency of classical 

MD. MLIPs have been successfully employed to model complex phenomena such as dislocation 

nucleation and motion, crack initiation and propagation, and phase transitions in binary alloys, providing 

unprecedented predictive fidelity across diverse compositional and structural spaces [68–70]. 

Furthermore, active learning frameworks have been developed to iteratively refine MLIPs on the fly 

during simulations, allowing the potential to adapt dynamically to evolving atomic environments. This 

capability is particularly critical for simulating non-equilibrium processes, defect formation, and 

surface/interface dynamics in alloys, where traditional fixed-form potentials often fail. The combination 

of MLIPs with high throughput simulations and multiscale modeling thus offers a powerful platform for 

the predictive design of advanced binary alloys with tailored mechanical, thermal, and electronic 

properties. Although MLIPs (e.g., MTP, GAP) achieve near DFT accuracy, generating high-quality training 

datasets remains a costly and highly skilled process, especially in the large structural and compositional 

spaces of binary alloys. Furthermore, the extrapolation capability of MLIPs beyond the training data 

space remains an ongoing research issue. 

5.2.2. Digital twins of material lifecycles. 

The concept of digital twins virtual, high fidelity replicas that represent the entire lifecycle of materials 

from synthesis through service induced degradation is rapidly gaining traction in the field of alloy 

research. These platforms integrate multi-scale computational simulations, including DFT, MD, and Finite 

Element Methods (FEM), with experimental feedback derived from in situ characterization techniques 

such as electron microscopy, X-ray diffraction, and spectroscopy. By combining operational data streams 

from sensors and performance monitoring, digital twins provide a dynamic, continuously updated 

representation of material behavior under realistic conditions. In the context of binary alloys, digital 
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twins offer the capability to track microstructural evolution, grain growth, phase transformations, defect 

nucleation, and accumulation over time, enabling predictive modeling of mechanical, thermal, and 

chemical performance. Such models facilitate anticipatory maintenance, lifetime prediction, and real time 

optimization of components in demanding service environments, including aerospace engines, energy 

systems, and biomedical implants [71, 72]. By bridging atomistic simulations, mesoscale modeling, and 

experimental validation within a unified framework, digital twins represent a transformative paradigm 

for materials design, process control, and reliability assurance, accelerating the translation of 

computational insights into industrially deployable alloy solutions. Implementing a Digital Twin is not 

only challenging in terms of simulation but also in terms of data infrastructure and system integration. It 

requires continuous, real-time integration between multi-scale models (DFT, MD, FEM), experimental 

sensor data (in situ characterization), and industrial operational systems. Challenges of data 

compatibility, metadata standardization, and building automated feedback loops are the biggest barriers 

to implementing a Digital Twin in a real world production environment. 

5.2.3. Quantum computing for electronic structure. 

Classical DFT approaches, while highly effective for many materials, are fundamentally constrained when 

addressing systems with strongly correlated electrons or large-scale quantum phenomena. These 

limitations hinder accurate modeling of electronic structure, magnetism, and excitonic effects in complex 

binary alloys. Quantum computing, leveraging algorithms such as quantum phase estimation and 

variational quantum eigensolvers (VQE), presents a promising pathway to surmount these challenges by 

enabling direct solutions of the electronic Schrödinger equation on quantum hardware. Although 

currently in its early developmental stages, quantum algorithms have already demonstrated successful 

simulations of small molecules and simplified Hubbard models, establishing proof-of-concept for future 

applications in materials science [73, 74]. Looking forward, quantum simulation holds the potential to 

revolutionize the prediction of electronic properties in complex binary systems, including band 

structures, magnetic ordering, and excitonic behavior in alloys such as Fe–Ni, MoS2–WS2, and other 

technologically relevant compounds. By enabling quantum-level accuracy for systems that are intractable 

with classical methods, quantum-enabled computational frameworks could unlock fundamentally new 

insights into alloy behavior, guiding the design of high performance materials for electronics, energy, and 

spintronic applications. The integration of quantum simulation with classical multiscale modeling and 

machine learning represents a forward looking strategy to expand the predictive reach of computational 

alloy design. Then they have to face the challenges of Quantum Computing because this field is still in the 

early developmental stages. Current algorithms can only successfully simulate small molecules or simple 

Hubbard models. Technical barriers such as high error rates of qubits, decoherence, and scalability issues 

for complex material systems (e.g., a large alloy crystal) are major challenges that will take decades to 

solve 

5.3. Toward autonomous materials design. 
The convergence of artificial intelligence (AI) enhanced modeling, real-time experimental integration, 

and emerging quantum computing technologies is ushering in a transformative era of autonomous 

materials design. Within this paradigm, computational simulations evolve from passive predictive tools 

into active agents embedded in closed loop design systems, capable of generating hypotheses, guiding 

synthesis, validating experimental outcomes, and dynamically adapting to feedback. For binary alloys, 

such autonomous frameworks envision the rapid identification of compositions with tailored mechanical, 
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electronic, thermal, or biocompatible properties; predictive modeling of microstructural evolution under 

realistic service conditions; and real-time optimization of processing parameters, all with minimal 

human intervention. Initiatives such as the Materials Genome Initiative (MGI), AFLOW, and NOMAD 

provide the essential computational infrastructure, high fidelity datasets, and standardized descriptors 

required for training and deploying these intelligent design agents. Realizing this vision will necessitate 

close interdisciplinary collaboration among materials scientists, computational physicists, data 

engineers, and manufacturing specialists, fostering integration across simulation, characterization, and 

fabrication domains [75]. By combining AI, multiscale modeling, quantum-enabled simulations, and 

digital twin frameworks, the materials community can accelerate the discovery to deployment cycle for 

binary alloys, enabling a new generation of high performance, application specific materials and 

establishing a paradigm shift in how alloys are designed, optimized, and industrially implemented. 

Currently, many studies have linked the results of experimental methods with the results of simulation 

methods to compare, contrast and confirm each other's results and predictions, creating a rich database 

for comparison and sharing with the world community. In that, with the proposed recommendations:  

-ML Experiment Integration: Develop closed-loop feedback systems where ML enhanced predictions are 

sent to automated synthesis and characterization systems (e.g., Robotic Labs) for validation and 

collection of new experimental data. This data is then used to refine the ML model, forming an 

autonomous materials design cycle.  

-Develop Open Access Alloy Databases: Invest in building standardized repositories (using unified 

metadata) that contain not only DFT data but also multi-condition experimental data (elevated 

temperature properties, mechanical properties under load, heat treatment data, etc.). Initiatives such as 

AFLOWLIB and NOMAD need to be expanded to integrate experimental and simulation data from 

different scales (DFT, MD, FEM).  

-Multiscale Modeling Enhancement: Priority is given to the development of hybrid approaches and 

multiscale modeling software that can automatically link accurate predictions from DFT (quantum level) 

with large-scale dynamics of MD and continuum level modeling (Phase Field, FEM), to solve complex 

microstructure and large deformation problems under realistic conditions (e.g., simulation of casting or 

3D printing processes).  

-MLIP Validation and Expansion: Research focuses on validating the transferability and extrapolation of 

Machine Learning Force Fields (MLIPs) for novel binary alloy systems and non-equilibrium conditions. 

6. Conclusion. 
The convergence of computational simulation and materials science has catalyzed a transformative 

paradigm in the discovery, design, and optimization of binary alloys. Modern simulations now provide 

atomistic and quantum level insights, elucidating mechanisms such as dislocation nucleation, grain-

boundary evolution, and phase stability, while simultaneously enabling predictive modeling of thermal, 

electronic, and mechanical properties. The case studies examined from Si–Ge semiconductors and MoS2–

WS2 2D alloys to Ti–Nb biomedical and Al–Mg structural systems illustrate how theoretical predictions 

increasingly align with experimental validation, high-throughput synthesis, and industrial deployment. 

Despite these advances, several challenges persist. Force field limitations constrain the accuracy of 

molecular dynamics simulations, the computational cost of DFT and large-scale modeling restricts 

system size and timescales, and gaps remain in integrating multi-fidelity simulation data with real-world 

experimental workflows. Emerging strategies including machine learned interatomic potentials, digital 
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twin platforms, and quantum computing offer robust pathways to overcome these bottlenecks, enabling 

high-fidelity, scalable, and adaptive simulation frameworks that closely mirror physical reality. Looking 

forward, the future of binary alloy research lies in closed-loop, simulation-informed ecosystems capable 

of autonomously guiding synthesis, characterization, and deployment. By unifying AI enhanced modeling, 

multiscale simulation, and real-time experimental feedback within a coherent data centric framework, 

the materials community can accelerate innovation cycles, reduce development costs, and engineer 

alloys with unprecedented functional performance. The frontier is no longer defined by computational 

limitations; rather, it is shaped by the ability to integrate and orchestrate diverse predictive tools into a 

synergistic platform for next-generation materials discovery. 
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