Review, Atomistic simulations of two dimensional materials: insights from first principles and molecular dynamics methods.

Atomistic simulations of two dimensional materials.

Authors

  • Stefan Ta Lu Technical University of Cluj-Napoca, The Directorate of Research Development and Innovation Management (DMCDI), 15 Constantin Daicoviciu Street Cluj-Napoca 400020, Cluj County, Romania. Author
  • Lam Vu Truong Department of Materials Science and Metallurgical Engineering, Sunchon National University, Jungang-ro, Suncheon, Jeonnam 540-742 Translator
  • Dung Nguyen Trong University of Transport Technology, Faculty of Applied Science, 54 Trieu Khuc Thanh Xuan, Hanoi, 100000, Vietnam. Author

DOI:

https://doi.org/10.65273/hhit.jna.2025.1.1.17-32

Keywords:

2D Materials, DFT, Graphene, Mechanical Properties, Molecular Dynamics.

Abstract

Computational methods have become indispensable tools for the discovery and characterization of two-dimensional (2D) materials. This review focuses on the powerful synergy between Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations in understanding these atomically thin systems. We highlight how DFT serves as the cornerstone for predicting fundamental electronic properties such as band structure, defect states, and electronic transport in 2D materials like graphene and transition metal dichalcogenides (TMDs). Concurrently, MD simulations with accurately parameterized force fields provide critical insights into their mechanical resilience, thermal transport, and defect-driven fracture mechanisms. The integration of these two methods enables a multiscale approach to material design, from predicting quantum phenomena at the nanoscale to modeling large-area mechanical performance. This review demonstrates the pivotal role of atomistic simulations in unlocking the vast potential of 2D materials for next-generation electronics, energy, and sensor technologies.  

 

Downloads

Download data is not yet available.

References

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al. (2016). Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5696), 666–669.

[2] N. Ashraf, M. Isa Khan, A. Majid, M. Rafique, M.B. Tahir. (2020). A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chinese Journal of Physics, 66, 246–257. DOI:10.1016/j.cjph.2020.03.035.

[3] Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vilá, S.M. Eichfeld, J.D. Caldwell, et al. (2016). Two-dimensional gallium nitride realized via graphene encapsulation. Nature Materials, 15*(11), 1166–1171.

[4] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341 (6153), 1502–1505.

[5] L. Liu, P. Feng, X. Shen. (2003). Structural and electronic properties of h-BN. Physical Review B, 68 (10), 1–8.

[6] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, et al. (2010). Emerging photoluminescence in monolayer MoS2. Nano Letters, 10 (4), 1271–1275.

[7] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, et al. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7(4), 2898–2926.

[8] A.K. Geim, I.V. Grigorieva. (2013). Van der Waals heterostructures. Nature, 499 (7459), 419–425. DOI:10.1038/nature12385.

[9] H. Zhang. (2015). Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 9(10), 9451–9469.

[10] G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, et al. (2015). Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 9 (12), 11509–11539.

[11] R.O. Jones. (2015). Density functional theory: Its origins, rise to prominence, and future. Reviews of Modern Physics, 87 (3).

[12] T. Botari, E. Perim, P.A.S. Autreto, A.C.T. van Duin, R. Paupitz, D.S. Galvao. (2014). Mechanical properties and fracture dynamics of silicene membranes. Physical Chemistry Chemical Physics, 16 (36), 19417–19423.

[13] N.P. Kryuchkov, S.O. Yurchenko, Y.D. Fomin, E.N. Tsiok, V.N. Ryzhov. (2018). Complex crystalline structures in a two-dimensional core-softened system. Soft Matter, 14, 2152–2162.

[14] K. Momeni, Y. Ji, Y. Wang, S. Paul, S. Neshani, D.E. Yilmaz, et al. (2020). Multiscale computational understanding and growth of 2D materials: a review. npj Computational Materials, 6 (1). DOI:10.1038/s41524-020-0280-2.

[15] M. Born, R. Oppenheimer. (1927). Born Oppenheimer. Annalen der Physik, 20, 457–484.

[16] J.Y. Jung, J.H. Park, Y.J. Jeong, K.H. Yang, N.K. Choi, S.H. Kim, et al. (2006). Involvement of Bcl-2 family and caspases cascade in sodium fluoride-induced apoptosis of human gingival fibroblasts. Korean Journal of Physiology & Pharmacology, 10 (5), 289–295.

[17] E. Gey. (1995). Density-Functional Theory of Atoms and Molecules. Zeitschrift für Physikalische Chemie, 191 (2), 277–278.

[18] A. Allouche. (2012). Software News and Updates: Gabedit—A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182.

[19] K. Burke. (2012). Perspective on density functional theory. Journal of Chemical Physics, 136 (15).

[20] A.D. Becke. (2014). Perspective: Fifty years of density-functional theory in chemical physics. Journal of Chemical Physics, 140 (18).

[21] J.P. Perdew, M. Levy. (1983). Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Physical Review Letters, 51 (20), 1884–1887.

[22] S. Dudarev, G. Botton. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57 (3), 1505–1509.

[23] J. Heyd, G.E. Scuseria, M. Ernzerhof. (2003). Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 118 (18), 8207–8215.

[24] F.Y. Rovinskii. (1965). Method for calculating the radioactive impurity concentration in the water and the bottom layer of stagnant reservoirs. Soviet Atomic Energy, 18 (4), 480–485.

[25] A. Yadav, C.M. Acosta, G.M. Dalpian, O.I. Malyi. (2023). First-principles investigations of 2D materials: Challenges and best practices. Matter, 6 (9), 2711–2734. DOI:10.1016/j.matt.2023.05.019.

[26] B.J. Alder, T.E. Wainwright. (1957). Phase transition for a hard sphere system. Journal of Chemical Physics, 27 (5), 1208–1209.

[27] P. Singh, P. Sharma, K. Bisetty, J.J. Perez. (2010). Molecular dynamics simulations of Ac-3Aib-Cage-3Aib-NHMe. Molecular Simulation, 36 (13), 1035–1044.

[28] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson. (1982). A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. Journal of Chemical Physics, 76 (1), 637–649.

[29] J. Tersoff. (1988). Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters, 61 (25), 2879–2882.

[30] J. Tersoff. (1988). New empirical approach for the structure and energy of covalent systems. Physical Review B, 37 (12), 6991–7000.

[31] J. Tersoff. (1989). Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 39 (8), 5566–5568.

[32] T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, et al. (2016). The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2, 2015. DOI:10.1038/npjcompumats.2015.11.

[33] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, et al. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. DOI:10.1016/j.cpc.2021.108171.

[34] H. Qu, S. Guo, W. Zhou, B. Cai, S. Zhang, Y. Huang, et al. (2019). Electronic structure and transport properties of 2D RhTeCl: A NEGF-DFT study. Nanoscale, 11 (43), 20461–20466.

[35] L. Zhang, A. Zunger. (2015). Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: Emergence of localization prototypes. Nano Letters, 15 (2), 949–957.

[36] O.I. Malyi, K.V. Sopiha, I. Radchenko, P. Wu, C. Persson. (2018). Tailoring electronic properties of multilayer phosphorene by siliconization. Physical Chemistry Chemical Physics, 20 (3), 2075–2083.

[37] E. Güler, G. Uğur, M. Güler. (2025). DFT insights into the electronic, optical, elastic, mechanical, and anisotropic profiles of 2D Ni2PS2 and Ni2PSe2. Journal of Alloys and Compounds, 1036.

[38] S. Tazekritt, M. Gallouze, A. Kellou. (2024). DFT study of energetics and optoelectronics properties of B, C, and N binary and ternary honeycomb structures. Journal of Applied Physics, 135 (9).

[39] H.P. Komsa, A.V. Krasheninnikov. (2015). Native defects in bulk and monolayer MoS2 from first principles. Physical Review B, 91 (12), 1–17.

[40] J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, et al. (2015). Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 6, 1–8.

[41] R. Lv, M. Terrones. (2012). Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters, 78, 209–218. DOI:10.1016/j.matlet.2012.04.033.

[42] D. Voiry, A. Mohite, M. Chhowalla. (2015). Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 44 (9), 2702–2712.

[43] T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich. (2016). Quantum emission from hexagonal boron nitride monolayers. Nature Nanotechnology, 11 (1), 37–41.

[44] R. Rasuli, K. Mostafavi, J. Davoodi. (2014). Molecular dynamics simulation of graphene growth on Ni(100) facet by chemical vapor deposition. Journal of Applied Physics, 115 (2).

[45] S. Chen, Q. Bai, H. Wang, Y. Dou, W. Guo. (2022). Controlled growth of large-area monolayer graphene on Ni(110) facet: Insight from molecular dynamics simulation. Physica E: Low-Dimensional Systems & Nanostructures, 144, 115465. DOI:10.1016/j.physe.2022.115465.

[46] J. Cai, X. Han, X. Wang, X. Meng. (2020). Atomic Layer Deposition of Two-Dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics. Matter, 2(3), 587–630. DOI:10.1016/j.matt.2019.12.026.

[47] N. Uene, T. Mabuchi, M. Zaitsu, S. Yasuhara, A.C.T. van Duin, T. Tokumasu. (2024). Reactive Force Field Molecular Dynamics Studies of the Initial Growth of Boron Nitride Using BCl3 and H3 by Atomic Layer Deposition. Journal of Physical Chemistry C, 128 (3), 1075–1086.

[48] D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, et al. (2017). A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters, 13, 42–77. DOI:10.1016/j.eml.2017.01.008.

[49] M.J. Nine, M.A. Cole, D.N.H. Tran, D. Losic. (2015). Graphene: A multipurpose material for protective coatings. Journal of Materials Chemistry A, 3 (24), 12580–125602. DOI:10.1039/C5TA01010A.

[50] B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park. (2014). Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science, 131 (1), 1–23.

[51] R.M. Elder, M.R. Neupane, T.L. Chantawansri. (2015). Stacking order dependent mechanical properties of graphene/MoS2 bilayer and trilayer heterostructures. Applied Physics Letters, 107 (7).

[52] G. Mallick, R.M. Elder. (2018). Graphene/hexagonal boron nitride heterostructures: Mechanical properties and fracture behavior from nanoindentation simulations. Applied Physics Letters, 113 (12).

[53] G. Mallick, R.M. Elder. (2018). Graphene/hexagonal boron nitride heterostructures: Mechanical properties and fracture behavior from nanoindentation simulations. Applied Physics Letters, 113 (12). DOI:10.1063/1.5047782.

[54] L. Patra, G. Mallick, G. Sachdeva, C. Shock, R. Pandey. (2021). Orientation-dependent mechanical response of graphene/BN hybrid nanostructures. Nanotechnology, 32 (23).

[55] O.Y. Zhong-can, Z.B. Su, C.L. Wang. (1997). Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion. Physical Review Letters, 78 (21), 4055–4058.

[56] D. Wickramaratne, L. Weston, C.G. Van De Walle. (2018). Monolayer to Bulk Properties of Hexagonal Boron Nitride. Journal of Physical Chemistry C, 122 (44), 25524–25529.

[57] A. Falin, Q. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang, et al. (2017). Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 8, 1–9. DOI:10.1038/ncomms15815.

[58] M.H. Rahman, E.H. Chowdhury, S. Hong. (2021). High temperature oxidation of monolayer MoS2 and its effect on mechanical properties: A ReaxFF molecular dynamics study. Surfaces and Interfaces, 26, 101371. DOI:10.1016/j.surfin.2021.101371.

[59] R. Lotfi, M. Naguib, D.E. Yilmaz, J. Nanda, A.C.T. Van Duin. (2018). A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. Journal of Materials Chemistry A, 6 (26), 12733–12743.

[60] P. Zheng, X. Zhang, Y. Duan, M. Yan, R. Chapman, Y. Jiang, et al. (2020). Oxidation of graphene with variable defects: alternately symmetrical escape and self-restructuring of carbon rings. Nanoscale, 12 (18), 10140–10148.

[61] X. Xu, Z. Zhang, W. Yao. (2021). Mechanical properties of graphene oxide coupled by multi-physical field: Grain boundaries and functional groups. Crystals, 11 (1), 1–12.

[62] A. Verma, A. Parashar, M. Packirisamy. (2019). Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Applied Surface Science, 470, 1085–1092. DOI:10.1016/j.apsusc.2018.11.218.

[63] A. Verma, R. Kumar, A. Parashar. (2019). Enhanced thermal transport across a bi-crystalline graphene-polymer interface: An atomistic approach. Physical Chemistry Chemical Physics, 21 (11), 6229–6237.

[64] M. Shishkin, G. Kresse. (2007). Self-consistent GW calculations for semiconductors and insulators. Physical Review B, 75 (23), 1–9.

[65] S. Yadav, B. Kumar, M. Kumar, Y.S. Sharma, S. Kaushik. (2023). Environmental resilience with 2D materials: A futuristic perspective. Environmental Functional Materials, 2 (3), 228–242. DOI:10.1016/j.efmat.2024.04.001.

[66] J. Behler. (2016). Perspective: Machine learning potentials for atomistic simulations. Journal of Chemical Physics, 145 (17).

[67] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh. (2018). Machine learning for molecular and materials science. Nature, 559*(7715), 547–555. DOI:10.1038/s41586-018-0337-2.

[68] T.Q. Tran, V.C. Long, Ş. Ţălu, D.N. Trong. (2022). Molecular dynamics study on the crystallization process of cubic Cu–Au alloy. Applied Sciences, 12(3), 946. DOI: 10.3390/app12030946.

[69] T.Q. Tran, P.N. Dang, D.N. Trong, V.C. Long, Ş. Ţălu. (2023). Molecular dynamics study on the influence of factors on the structure, phase transition, and crystallization of the Ag₁₋ₓAuₓ (x = 0.25, 0.5, 0.75) alloy. Materials Today Communications, 7, 107119. DOI: 10.1016/j.mtcomm.2023.107119.

[70[ D.N. Trong, V.C. Long, Ş. Ţălu. (2021). The structure and crystallizing process of Ni–Au alloy: A molecular dynamics simulation method. Journal of Composites Science, 5(1), 18. DOI: 10.3390/jcs5010018.

[71] Q.H. Nguyen, D.H. Nguyen, V.C. Long, D.N. Trong, Ş. Ţălu. (2021). Study on the melting temperature and thermodynamic jumps at melting point for the BCC defective and perfect interstitial alloy W–Si under pressure. Journal of Composites Science, 5(6), 153. DOI: 10.3390/jcs5060153.

[72] D.N. Trong, V.C. Long, U. Saraç, Q.V. Duong, Ş. Ţălu. (2022). First-principles calculations of crystallographic and electronic structural properties of Au–Cu alloys. Journal of Composites Science, 6(12), 383. DOI: 10.3390/jcs6120383.

[73] D.N. Trong, T.Q. Tran, O.V. Hoang, V.T. Ha, T.T. Duyen, N.T.T. Cuc, Ş. Ţălu. (2023). Temperature effect on the characteristic quantities of microstructure and phase transition of the alloy Ag₀.₂₅Au₀.₇₅. Journal of Science and Transport Technology, 3(1), 45–53. DOI: 10.58845/jstt.utt.en.2023.3.

Downloads

Published

2025-10-30

Data Availability Statement

PDF

How to Cite

Review, Atomistic simulations of two dimensional materials: insights from first principles and molecular dynamics methods.: Atomistic simulations of two dimensional materials. (2025). Journal of Nanomaterials and Applications (JNA), 1(1), 17-32. https://doi.org/10.65273/hhit.jna.2025.1.1.17-32

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)