Review, The power of simulation: Exploring binary alloys for next-generation applications

Exploring binary alloys for next-generation applications

Authors

  • Stefan Talu Technical University of Cluj-Napoca, The Directorate of Research Development and Innovation Management (DMCDI), 15 Constantin Daicoviciu Street Cluj-Napoca 400020, Cluj County, Romania Author
  • Dung Nguyen Trong University of Transport Technology, Faculty of Applied Science, 54 Trieu Khuc Thanh Xuan, Hanoi, 100000, Vietnam Translator
  • Lam Vu Truong Sunchon National University, Department of Advanced Materials and Metallurgical Engineering, Jungang-ro, Suncheon, Jeonnam 540-742, Republic of Korea Author

DOI:

https://doi.org/10.65273/hhit.jna.2025.1.1.1-16

Keywords:

Binary Alloys, Computational Simulation, Molecular Dynamics, Density Functional Theory, Machine Learning for Materials Discovery, Multiscale Modeling, Materials Design

Abstract

This review provides an updated perspective on the transformative role of computational simulation in the design and discovery of binary alloys for advanced technologies. Unlike traditional trial and error methods, molecular dynamics (MD) and density functional theory (DFT) simulations now deliver atomistic insights into structure property relationships, enabling more predictive materials design. Recent developments demonstrate that hybrid strategies integrating DFT, MD, machine learning (ML), and multiscale modeling are accelerating the discovery of high performance alloys. The article emphasizes the novelty of simulation-driven design frameworks while identifying critical research challenges, including scalability, force-field accuracy, and the integration of simulation with digital twin concepts. Through selected case studies ranging from semiconductors and biocompatible biomedical alloys to energy materials and emerging 2D binary systems this review argues that computational simulation is shifting from a supplementary role to a central driver of innovation in modern materials science.

 

 

Downloads

Download data is not yet available.

References

[1] D.B. Miracle, O.N. Senkov. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. DOI: 10.1016/j.actamat.2016.08.081.

[2] S.R. Kalidindi. (2015). Data science and cyberinfrastructure: Critical enablers for accelerated development of hierarchical materials. MRS Bulletin, 40(10), 837–845. DOI: 10.1557/mrs.2015.219.

[3] S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy. (2013). The high-throughput highway to computational materials design. Nature Materials, 12(3), 191–201. DOI: 10.1038/nmat3568.

[4] R.O. Jones. (2015). Density functional theory: Its origins, rise to prominence, and future. Reviews of Modern Physics, 87(3), 897–923. DOI: 10.1103/RevModPhys.87.897.

[5] S. Plimpton. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19. DOI: 10.1006/jcph.1995.1039.

[6] T.Q. Tran, V.C. Long, Ş. Ţălu, D.N. Trong. (2022). Molecular dynamics study on the crystallization process of cubic Cu–Au alloy. Applied Sciences, 12(3), 946. DOI: 10.3390/app12030946.

[7] T.Q. Tran, P.N. Dang, D.N. Trong, V.C. Long, Ş. Ţălu. (2023). Molecular dynamics study on the influence of factors on the structure, phase transition, and crystallization of the Ag₁₋ₓAuₓ (x = 0.25, 0.5, 0.75) alloy. Materials Today Communications, 37, 107119. DOI: 10.1016/j.mtcomm.2023.107119.

[8] D.N. Trong, V.C. Long, Ş. Ţălu. (2021). The structure and crystallizing process of Ni–Au alloy: A molecular dynamics simulation method. Journal of Composites Science, 5(1), 18. DOI: 10.3390/jcs5010018.

[9] Q.H. Nguyen, D.H. Nguyen, V.C. Long, D.N. Trong, Ş. Ţălu. (2021). Study on the melting temperature and thermodynamic jumps at melting point for the BCC defective and perfect interstitial alloy W–Si under pressure. Journal of Composites Science, 5(6), 153. DOI: 10.3390/jcs5060153.

[10] D.N. Trong, V.C. Long, U. Saraç, Q.V. Duong, Ş. Ţălu. (2022). First-principles calculations of crystallographic and electronic structural properties of Au–Cu alloys. Journal of Composites Science, 6(12), 383. DOI: 10.3390/jcs6120383.

[11] D.N. Trong, T.Q. Tran, O.V. Hoang, V.T. Ha, T.T. Duyen, N.T.T. Cuc, Ş. Ţălu. (2023). Temperature effect on the characteristic quantities of microstructure and phase transition of the alloy Ag₀.₂₅Au₀.₇₅. Journal of Science and Transport Technology, 3(1), 45–53. DOI: 10.58845/jstt.utt.en.2023.3.

[12] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547–555. DOI: 10.1038/s41586-018-0337-2.

[13] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton. (2016). A general-purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials, 2, 16028. DOI: 10.1038/npjcompumats.2016.28.

[14] T. Xie, J.C. Grossman. (2018). Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 120(14), 145301. DOI: 10.1103/PhysRevLett.120.145301.

[15] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. DOI: 10.1063/1.4812323.

[16] S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D. Morgan. (2012). AFLOW: An automatic framework for high-throughput materials discovery. Computational Materials Science, 58, 218–226. DOI: 10.1016/j.commatsci.2012.02.005.

[17] C. Draxl, M. Scheffler. (2018). The NOMAD Laboratory: From data sharing to artificial intelligence. Journal of Physics: Materials, 2(3), 036001. DOI: 10.1088/2515-7639/ab13bb.

[18] E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker. (2011). The OpenKIM repository for interatomic models. Computational Materials Science, 50(3), 1037–1045. DOI: 10.1016/j.commatsci.2011.01.027.

[19] A. Ziletti, D. Kumar, M. Scheffler, L.M. Ghiringhelli. (2018). Insightful classification of crystal structures using deep learning. Nature Communications, 9, 2775. DOI: 10.1038/s41467-018-05169-6.

[20] G. Pilania, A. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad. (2013). Accelerating materials property predictions using machine learning. Scientific Reports, 3, 2810. DOI: 10.1038/srep02810.

[21] T. Lookman, P.V. Balachandran, D. Xue, R. Yuan. (2019). Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Computational Materials, 5, 21. DOI: 10.1038/s41524-019-0153-8.

[22] J. Qi, T. Liang, J. Zhang, Y. Wang. (2024). Integrated design of aluminum-enriched high-entropy refractory B2 alloys with synergy of high strength and ductility. Science Advances, 10(14), eadq0083. DOI: 10.1126/sciadv.adq0083.

[23] A. Thorn, J. Wang, Z. Sun, C. Wolverton. (2023). Machine learning search for stable binary Sn alloys with Na, Ca, Cu, Pd, and Ag. Physical Chemistry Chemical Physics, 25, 22415–22436. DOI: 10.1039/D3CP02893A.

[24] G. Wang, J. Zhang, S. Shao, Y. Zhang. (2024). Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations. iScience, 27(5), 109673. DOI: 10.1016/j.isci.2024.109673.

[25] J. Wang, L. Wu, Y. Xu. (2025). Efficient moment tensor machine-learning interatomic potential for accurate description of defects in Ni–Al alloys. Physical Review Materials, in press. DOI: 10.1103/PhysRevMaterials.9.045003.

[26] H. Xu, Y. Wang, T. Li. (2023). High-Accuracy Neural Network Interatomic Potential for Silicon Nitride. Nanomaterials, 13, 1352. DOI: 10.3390/nano13071352.

[27] T. Cui, H. Wu, J. Feng. (2024). Geometry-enhanced pretraining on interatomic potentials. Nature Machine Intelligence, 6, 428–436. DOI: 10.1038/s42256-024-00783-3.

[28] W. Kohn, L.J. Sham. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138. DOI: 10.1103/PhysRev.140.A1133.

[29] A. Rahman, M.S. Hossain, A.B. Siddique. (2025). Machine learning approaches for diverse alloy systems. Journal of Materials Science, 60, 12189–12221. DOI: 10.1007/s10853-025-09472-9.

[30] G.L.W. Hart, T. Mueller, C. Toher, S. Curtarolo. (2021). Machine learning for alloys. Nature Reviews Materials, 6, 730–755. DOI: 10.1038/s41578-021-00320-1.

[31] M. Hu, J. Li, Y. Wang. (2023). Recent applications of molecular dynamics in alloy design. Materials Science and Engineering R: Reports, 156, 100753. DOI: 10.1016/j.mser.2023.100753.

[32] Y. Wang, J. Li. (2020). Mechanical behavior of Ti–Nb alloys by atomistic simulations. Acta Materialia, 194, 262–273. DOI: 10.1016/j.actamat.2020.04.021.

[33] L. Huang, K. Zhao. (2025). First-principles study of Cu–Zn alloys. Journal of Alloys and Compounds, 976, 173253. DOI: 10.1016/j.jallcom.2024.173253.

[34] J. Li, et al. (2022). Martensitic transformation and elastic properties in Ti–Nb alloys. Scripta Materialia, 215, 114752.

[35] T. Xie, et al. (2021). Machine-learning-assisted prediction of mechanical properties of alloys. npj Computational Materials, 7, 40.

[36] H. Liu, et al. (2024). High-strength Al–Mg alloys by atomistic simulations. Acta Materialia, 258, 119071.

[37] Y. Zhang, et al. (2019). Lattice thermal conductivity of Si–Ge alloys from first-principles. Physical Review B, 100, 195205.

[38] J. Kim, et al. (2022). Thermal conductivity reduction in Al–Mg alloys. Journal of Materials Science, 57, 14321–14335.

[39] X. Chen, et al. (2024). Short-range order effects on phonon transport in Fe–Ni alloys. Acta Materialia, 256, 118765.

[40] X. Zhou, et al. (2021). Electronic band structure of Si–Ge alloys. Journal of Applied Physics, 129, 145703.

[41] A. Singh, et al. (2023). Thermoelectric properties of Bi–Sb alloys: A first-principles study. Journal of Materials Chemistry A, 11, 1834–1845.

[42] A. Ramasubramaniam, et al. (2020). Tunable band gaps in MoS₂–WS₂ alloys. Nano Letters, 20, 878–884.

[43]. D. Qiu, et al. (2021). Excitonic effects in 2D alloys by GW/TDDFT. Physical Review Letters, 127, 206401.

[44]. D. Jha, et al. (2022). Accelerated materials discovery of semiconductors using ML. npj Computational Materials, 8, 124.

[45] Z. Li, et al. (2022). Hydrogen storage performance of Al–Mg alloys. International Journal of Hydrogen Energy, 47, 31454–31465.

[46] Q. Sun, et al. (2023). Corrosion and catalytic activity of Fe–Ni alloys for SOFCs. Journal of Power Sources, 554, 232328.

[47] Y. Zhang, et al. (2024). Li diffusion and volume expansion in Si–Sn and Sn–Sb alloys. Electrochimica Acta, 466, 143197.

[48] N. Bhat, et al. (2024). AI-assisted discovery of alloy catalysts for CO₂ reduction. Advanced Energy Materials, 14, 2401156.

[49] Y. Zhang, et al. (2020). Electronic properties of strained Si–Ge semiconductors. Physical Review B, 102, 195201.

[50] H. Li, et al. (2022). Strain modulation of carrier mobility in SiGe alloys. Applied Physics Letters, 120, 022104.

[51] P. Dongre, et al. (2021). Thermoelectric enhancement in SiGe nanostructures: DFT–MD insights. Nano Energy, 82, 105701.

[52] H. Kang, et al. (2020). SiGe channel engineering for FinFET technologies. IEEE Transactions on Electron Devices, 67, 2917–2924.

[53] M. Hu, et al. (2022). Atomistic insights into deformation of Ti–Nb alloys. Materials Science and Engineering A, 832, 142388.

[54] L. Chen, et al. (2021). Biomolecule adsorption on Ti–Nb alloy surfaces from AIMD. Biointerphases, 16, 041006.

[55] Z. Xu, et al. (2023). Multiscale simulations of additively manufactured Ti–Nb implants. Additive Manufacturing, 61, 103398.

[56] J. Li, et al. (2019). Phase stability of Al–Mg alloys: First-principles thermodynamics. Acta Materialia, 172, 1–12.

[57] H. Liu, et al. (2021). Dislocation behavior in Al–Mg alloys from MD simulations. Acta Materialia, 203, 116–127.

[58] T. Zhang, et al. (2023). Crashworthiness prediction of Al–Mg alloys by multiscale modeling. International Journal of Mechanical Sciences, 242, 107656.

[59] T. Xie, et al. (2022). Machine-learning discovery of corrosion-resistant Al–Mg alloys. npj Computational Materials, 8, 124.

[60] J. Sun, et al. (2021). Phase stability in MoS₂–WS₂ alloys from Monte Carlo simulations. Journal of Physical Chemistry C, 125, 16623–16632.

[61] A. Singh, et al. (2022). Band gap tuning in C–BN alloys: Hybrid DFT study. Journal of Materials Chemistry C, 10, 11203–11212.

[62] P. Kumar, et al. (2023). Mechanical and thermal properties of graphene–hBN alloys. Carbon, 212, 118257.

[63] D. Qiu, et al. (2024). Predictive modeling of nucleation in 2D heterostructures. Advanced Materials, 36, 2401123.

[64] J. Behler. (2016). Perspective: Machine learning potentials for atomistic simulations. Journal of Chemical Physics, 145(17), 170901.

[65] M. Rupp, A. Tkatchenko, K.R. Müller, O.A. Von Lilienfeld. (2018). Fast and accurate modeling of molecular atomization energies with machine learning. Physical Review Letters, 108(5), 058301.

[66] N.D.M. Hine, et al. (2019). Linear-scaling density functional theory using the ONETEP code. Journal of Physics: Condensed Matter, 31(3), 033001.

[67]. S. Curtarolo, et al. (2013). The AFLOWLIB.org consortium: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 58, 227–235.

[68] A.P. Bartók, et al. (2017). Machine learning unifies the modeling of materials and molecules. Science Advances, 3(12), e1701816.

[69] A.V. Shapeev. (2016). Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Modeling & Simulation, 14(3), 1153–1173.

[70]. Y. Zuo, et al. (2020). Performance and cost assessment of machine learning interatomic potentials. Journal of Physical Chemistry A, 124(4), 731–745.

[71] S. Raju, et al. (2020). Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 62, 101837.

[72] E.J. Tuegel, et al. (2011). Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011, 154798.

[73] S. McArdle, et al. (2020). Quantum computational chemistry. Reviews of Modern Physics, 92(1), 015003.

[74] B. Bauer, et al. (2020). Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120(22), 12685–12717.

[75] Ș. Țălu. (2015). Micro and nanoscale characterization of three-dimensional surfaces: Basics and applications. Napoca Star Publishing House, Cluj-Napoca, Romania. ISBN: 978-606-690-349-3.

Cover Image

Downloads

Published

2025-10-30

Data Availability Statement

PDF

How to Cite

Review, The power of simulation: Exploring binary alloys for next-generation applications: Exploring binary alloys for next-generation applications. (2025). Journal of Nanomaterials and Applications (JNA), 1(1), 1-16. https://doi.org/10.65273/hhit.jna.2025.1.1.1-16

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)